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MR-Adopt: Automatic Deduction of Input Transformation
Function for Metamorphic Testing

Anonymous Author(s)

ABSTRACT

While a recent study reveals that many developer-written test cases
can encode a reusable Metamorphic Relation (MR), over 70% of
them directly hard-code the source input and follow-up input in
the encoded relation. Such encoded MRs, which do not contain
an explicit input transformation to transform the source inputs to
corresponding follow-up inputs, cannot be reused with new source
inputs to enhance test adequacy.

In this paper, we propose MR-Adopt (Automatic Deduction Of

inPut Transformation) to automatically deduce the input transfor-
mation from the hard-coded source and follow-up inputs, aiming to
enable the encoded MRs to be reused with new source inputs. With
typically only one pair of source and follow-up inputs available in
an MR-encoded test case as the example, we leveraged LLMs to
understand the intention of the test case and generate additional ex-
amples of source-followup input pairs. This helps to guide the gen-
eration of input transformations generalizable to multiple source
inputs. Besides, to mitigate the issue that LLMs generate erroneous
code, we refine LLM-generated transformations by removing MR-
irrelevant code elements with data-flow analysis. Finally, we assess
candidate transformations based on encoded output relations and
select the best transformation as the result. Evaluation results show
that MR-Adopt can generate input transformations applicable to
all experimental source inputs for 72.00% of encoded MRs, which
is 33.33% more than using vanilla GPT-3.5. By incorporating MR-
Adopt-generated input transformations, encoded MR-based test
cases can effectively enhance the test adequacy, increasing the line
coverage and mutation score by 10.62% and 18.91%, respectively.

KEYWORDS
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1 INTRODUCTION

Metamorphic Testing (MT) is a powerful testing technique to ad-
dress both the test case generation and the oracle problem [5, 30].
Instead of assessing the outputs of individual inputs, MT validates
the behavior of a subject under test (SUT) against a series of Meta-
morphic Relations (MRs) for the SUT. Each MR defines an input

relation over a set of related test inputs and an output relation over
the expected outputs for those inputs. One outstanding benefit of
MT is that once an MR is identified, MT can leverage a wide range
of automatically generated test inputs (known as source inputs) to
exercise diverse program behaviors with no need to prepare oracles
for individual inputs [44]. MT has achieved success in detecting
critical faults for various software, such as compilers [17, 34] and
databases [22, 25].

Identifying appropriate MRs for a SUT is an essential step to ap-
plying MT. As such, there are studies focusing on the MR identifica-
tion. Earlier approaches either suffer from being labor-intensive and

specific to certain domains or pre-definedMR patterns [35, 49, 50] or
produce overly generic MRs that are ineffective for testing, as well
as recent LLM-based techniques [33, 38]. Recently, Xu et al. [44]
report that developers often encode domain knowledge in test
cases that exercise MRs. These encoded MRs are found able to
be generalized to many new inputs and serve as oracles to test
the original programs (or programs with similar functionalities)
more exhaustively, by integrating with automatic input generation
techniques [5, 30, 44].

However, Xu et al. [44] show that over 70% of 11,000MR-encoded
test cases (MTCs) in their dataset do not contain explicit input rela-
tions. Instead, developers often hard-code the source and follow-up
inputs. Figure 1a shows an MR-encoded test case intended to have
the follow-up input (dateB) one day after the source input (dateA),
but it simply hard-codes the two inputs. Without an explicit input
transformation program, follow-up inputs cannot be directly gen-
erated from automatically generated source inputs. This limitation
hinders the reuse of valuable encoded MRs to achieve automated
MT and enhance test adequacy. This paper aims to overcome

this obstacle by inferring an explicit input relation from a

given test case with its hard-coded input pairs. Specifically,
our goal is to construct an input transformation function that turns
a source input into a follow-up input as shown in Figure 1b. With
such input transformations, these encodedMRs can apply to a wider
range of test inputs to test SUTs more thoroughly (Figure 1c).

In fact, our goal can be viewed as a programming by example
(PBE) task, whose goal is to synthesize an input transformation
function that takes the example input (hard-coded source input)
and generates the example output (hard-coded follow-up input).
It is a non-trivial task as it requires a correct understanding of the
contextual information, such as the underlying relation between
hard-coded input pairs, corresponding output relations, and the
properties of SUT. Moreover, in our task, there is only one pair of
source and follow-up inputs available as the example [44]. Existing
PBE studies suggest that a small number of examples tend to make
a generated program overfitted to the given example instead of
realizing the true intention [1, 11, 29]. As such, it becomes notably
important in our task to effectively leverage the available contextual

information to guide PBE so that we can generate a generalizable
input transformation that matches the semantic of an encoded MR,
i.e., a generated transformation can apply to all potential source
inputs of this MR with its output relation.

In this paper, we propose MR-Adopt, an approach to automati-
cally generating input transformation functions for MRs encoded in
human-written test cases leveraging large language models (LLMs).
LLMs are trained on extensive code corpus encompassing a variety
of programs and tests from various domains and have shown effec-
tiveness in code understanding [10, 24, 26] and generation [3, 7, 15].
Thus, LLMs have the potential to understand the contextual infor-
mation and generate code based on such information. Our insight
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is to leverage the code understanding ability of LLMs to mine the
intention of MR and input relation from the hard-coded test inputs
and SUT’s function, and take advantage of their code generation
ability to produce good input transformation code. Specifically,
we propose three designs to effectively make use of LLMs’ abilities.

Firstly, we observe that directly providing LLMs with contextual
information only results in around 50% generalizable transforma-
tions (Section 4.5). This is unsatisfactory. We need a pipeline that
allows LLMs to effectively express the input relation inferred from
the hard-coded inputs and generate transformation code. To re-

alize this goal, we design MR-Adopt with two phases. In Phase1,
we prompt LLMs to do analogical reasoning [40, 47] on the hard-
coded source-followup input pairs to infer new input pairs that
obey the same input relation. In Phase2, we use LLMs to generate
an input transformation function based on (i) the test input pair
hard-coded by developers and (ii) additional input pairs generated
by LLMs in Phase1. This design not only enables LLMs to generate
code in their familiar programming setup (where a task descrip-
tion and several examples are provided) [21], but also mitigates the
above-mentioned overfitting issue due to the limited number of
examples.

Secondly, we found that LLMs often generate task-irrelevant
code segments, of which some are even faulty. For example, when
we ask LLMs to generate a test input, they may return a code
including a wrong assertion statement. To remove irrelevant code

which can be buggy, MR-Adopt refines LLM-generated codes by
conducting data-flow analysis to extract the codes relevant to the
given task (i.e., additional input pairs and input transformation
functions).

Thirdly, to mitigate the errors in the relevant codes generated
by LLMs, we propose to leverage the developer-written output
relations (i.e., assertions) in MTCs as oracles to verify the generated
test pairs. We further employ additional inputs to identify an input
transformation with the best generalizability as the result.

We evaluated MR-Adopt with 100 developer-written test cases
that encode MRs. Experimental results show that MR-Adopt can
generate compilable input transformations for 95MRs, where 72 can
generalize to all potential source inputs prepared in our evaluation.
It generates 17.28% more compilable transformations and 33.33%
more generalizable transformations than directly prompting GPT-
3.5. Besides, we found that MR-Adopt-generated transformations
effectively produce follow-up inputs for 91.21% source inputs pre-
pared in our evaluation, representing a 122.10% improvement over
GPT-3.5 in generating corresponding follow-up inputs for given
source inputs. In addition, our ablation study suggests that all
three designs (i.e., additional input pairs, date-flow analysis based
refinement, and output-relation based validation) contribute to MR-
Adopt’s overall performance, with the validation and additional
example input pairs having the most significant impact. Experimen-
tal results also indicate that incorporating MRs equipped with input
transformations with automatically generated new inputs leads to a
10.62% increase in line coverage and an 18.91% increase in mutation
score on top of developer-written test cases. This demonstrates the
practical usefulness of MR-Adopt-generated transformations in
enhancing test adequacy.

Contribution. Our work makes the following contribution:

• To the best of our knowledge, we are the first to generate input
transformations for MRs encoded in test cases. With the gener-
ated input transformations, more encoded MRs can be reused to
enhance the test adequacy of SUTs.

• We design and implemented MR-Adopt, an LLM-based approach
to deducing input transformation function. MR-Adopt uses a
two-phase pipeline to instruct LLMs to generate example test
input pairs and then transformation functions. MR-Adopt incor-
porates a code refinement strategy based on data flow analysis
and a validation strategy to mitigate the faulty code generated
by LLMs.

• We extensively evaluate the effectiveness of MR-Adopt in gen-
erating input transformations. Evaluation results show that MR-
Adopt can generate effective input transformations, where 72%
input transformations are generalizable to all prepared source
inputs. Integrated with the generated input transformation, the
encoded MRs increase line coverage by 10.62% and mutation
score by 18.91%.

• We build a dataset with 100 encoded MRs from projects after 01-
April, 2023. We release this dataset and our replication package
on our website [37].

2 PRELIMINARIES

2.1 Metamorphic Testing

Metamorphic Testing (MT) validates a program 𝑃 using Metamor-
phic Relations (MRs). AnMRR can be expressed as a logical implica-
tion from an input relation R𝑖 to an output relation R𝑜 [5, 30, 44].

R = ⟨R𝑖 ,R𝑜 ⟩, where R𝑖

(
𝑥𝑠 , 𝑥 𝑓

)
=⇒ R𝑜

(
𝑦𝑠 , 𝑦𝑓

)
R𝑖 defines the rule to generate an additional test input (known as
the follow-up input 𝑥 𝑓 ) from a given test input (known as the source
input 𝑥𝑠 ), and R𝑜 defines the relation between the expected outputs
(𝑦𝑠 , 𝑦𝑓 ) for the source and follow-up inputs, respectively. For exam-
ple, given a program 𝑃 implementing the sine function, an MR can
be defined with the input relation R𝑖 as 𝑥 𝑓 =−𝑥𝑠 (∀𝑥𝑠 ∈ R) and the
output relation R𝑜 as 𝑦𝑓 =−𝑦𝑠 . This MR is based on the property
that 𝑃 (𝑥)=−𝑃 (−𝑥) should hold for a correctly implemented sine

function.
Given an MR R for a SUT 𝑃 , conducting MT for 𝑃 entails the fol-

lowing five steps: (i) constructing a source input 𝑥𝑠 , (ii) executing 𝑃
on 𝑥𝑠 and obtaining the source output 𝑦𝑠 , (iii) constructing a follow-
up input 𝑥 𝑓 that satisfies R𝑖 , (iv) executing 𝑃 on 𝑥 𝑓 and obtaining
the follow-up output 𝑦𝑓 , and (v) verifying if the two outputs 𝑦𝑠
and 𝑦𝑓 satisfy the output relation R𝑜 . Typically, a function referred
to as the input transformation is designed to implement R𝑖 to
generate 𝑥 𝑓 from the given 𝑥𝑠 , and 𝑥𝑠 can be written by developers
or automatically generated (e.g., random testing) [30, 44].

2.2 MR-Encoded Test Cases

MR-encoded test cases (MTCs), introduced by Xu et al. [44], refer to
the test cases whose embedded domain-specific knowledge suggests
useful MRs. Such MTCs are prevalent. In their study, over 11,000
MTCs were discovered from 701 open-source projects. An MTC
1This MR-encoded test case is crafted from org.hisp.dhis.util in project dhis2-
core, where long format date is “yyyy-mm-dd hh:mm:ss” and medium format date is
“yyyy-mm-dd”.
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@Test
void testToMediumDate(){
  Date dateA = new Date("2024-01-01 00:00:00");

Date dateB = transformation(dateA);
  Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

(a) MTC featuring a hardcoded follow-up input

(b) MTC featuring a transformation-generated follow-up input

Method under test: < #BN$&+,)O.#$ >
Source output E!: < )$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":< )$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

1  @Test
2  void testToMediumDate(){
3   Date dateA = new Date("2024-01-01 00:00:00");
4 Date dateB = new Date("2024-01-02 00:00:00");
5   Date mediumA = DateUtils.toMediumDate(dateA);
6 Date mediumB = DateUtils.toMediumDate(dateB);
7 assertThat(mediumB, is(plusOneDay(mediumA)));
8 }

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2023-12-31 23:59:00"));
}

@Test
void testToMediumDateN(){

testToMediumDateMR(new Date("2024-02-28 23:59:00"));
}

...

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

  Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

(c) Metamorphic testing by integrating an MR with diverse source inputs 

/ …/

MR-TRANS: Deducing input transformation function

Applying transformation-complemented MR for new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: < )$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":< )$&+,)H >, Follow-up input !":< &.#$H >
Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!',	no	input	transformation:	!" = #'.@*AB')(!!)

@Test
void testToMediumDate(){
  Date dateA = new DateTime("2024-01-01 00:00:00").toDate();

Date dateB = new DateTime("2024-01-02 00:00:00").toDate();
  Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

...

(c) Metamorphic testing by integrating an MR with diverse source inputs 

/ …/

: Deducing input transformation function

Applying generalized MR to new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: < )$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":< )$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

void testToMediumDate(){
  Date dateA = new Date(“2024-01-01 00:00:00”);
  Date dateB = transformation(dateA);
  
  Date mediumA = DateUtils.toMediumDate(dateA);
  Date mediumB = DateUtils.toMediumDate(dateB);
    
  assertThat(mediumB, is(plusOneDay(mediumA)));
}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

@Test
void testToMediumDate(){
  Date dateA = new Datetime("2024-01-01 00:00:00").toDate();

Date dateB = transformation(dateA);
  Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

  Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2023-12-31 23:59:00"));
}

(a) An MR-encoded test case (MTC) featuring a hardcoded follow-up input
1
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Applying the generalized MR to new inputs
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assertThat(mediumB, is(plusOneDay(mediumA)));

}

...

(c) Metamorphic testing by integrating an MR with diverse source inputs 

MR-ADOPT: Deducing an input transformation function

Applying the generalized MR to new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: < )$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":< )$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

void testToMediumDate(){
  Date dateA = new Date(“2024-01-01 00:00:00”);
  Date dateB = transformation(dateA);
  
  Date mediumA = DateUtils.toMediumDate(dateA);
  Date mediumB = DateUtils.toMediumDate(dateB);
    
  assertThat(mediumB, is(plusOneDay(mediumA)));
}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

@Test
void testToMediumDate(){
  Date dateA = new Datetime("2024-01-01 00:00:00").toDate();

Date dateB = transformation(dateA);
  Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2024-02-29 23:59:00"));
}

(c) Metamorphic testing by integrating an MR with diverse source inputs

Figure 1: Overview of MR-Adopt for Metamorphic Testing

can be considered as an instance of an MR, already implemented
with specific source and follow-up input values, invocations of
methods under test, and output relation assertions. Such encoded
MRs can be generalized to new inputs and facilitate automated MT
by incorporating automatic input generation techniques.

Consider the example in Figure 1. The encoded MR in this test
case is: “IF a date 𝑥1 in long format (“yyyy-mm-dd hh:mm:ss”) is one
day ahead of another long-format date 𝑥2 (R𝑖 ), THEN 𝑥1 in medium
format (“yyyy-mm-dd”) should also be one day ahead of medium-
format 𝑥2 (R𝑜 )”. The SUTmethod toMediumDate is executed on the
source input dateA and the follow-up input dateB separately, and
the corresponding source and follow-up outputs are verified by the
assertion code assertThat(mediumB, is(plusOneDay(mediumA)),
which implements R𝑜 .

Such an implemented MR instance can be reused and general-
ized to many new inputs. However, the follow-up input dateB is
hardcoded with value "2024-01-02 00:00:00" instead of being
generated from dateA by an input transformation program. That
is, even if R𝑜 is explicitly coded, R𝑖 is implicit behind the specific
source and follow-up input values dateA and dateB. According to

Xu et al.’s study, over 70% of MR-encoded test cases lack explicitly
coded R𝑖 (i.e., input transformations). This limitation prevents
these MRs from being directly applied to new inputs automatically
generated by existing tools, e.g., Evosuite [9] and Randoop [28].
While these tools are proficient in generating diverse source in-
puts, they struggle with generating input pairs that satisfy an input
relation.

In this paper, we aim to address this limitation by deriving an
explicit input relation from a given test case and its hardcoded input
pairs. Specifically, our goal is to construct an input transforma-

tion function that converts a source input into a follow-up input,
as shown in Figure 1b. With such input transformations, embedded
MRs can be reused with a broader range of test inputs (Figure 1c)
to exercise more SUT’s behaviors, thereby enhancing the test ad-
equacy. One benefit of reusing the encoded MRs to prepare tests
is that we reuse the oracles (output relation assertions) written by
the developers in the MTCs, which could be fairly reliable.

3 MR-ADOPT

Figure 2 presents an overview of MR-Adopt. It takes as input a
pair of source and follow-up inputs and its context (i.e., an MR-
encoded test case and methods under test) and outputs an input
transformation function.

MR-Adopt works in a two-phase pipeline. In the first phase, it
generates additional source-follow-up input pairs and uses them
as examples to better describe the input relation, which provides
useful guidance for the generation of input transformations. In the
second phase, it generates input transformation functions based
on these example pairs. This setup is familiar to LLMs for code
generation tasks, as it includes not only a task description but
also several examples [21]. This two-phase pipeline provides more
information to effectively guide LLMs in generating generalized
transformations.

In each phase, MR-Adopt employs generation, refinement, and
validation procedures. In Phase1, MR-Adopt first leverages LLMs
to generate candidate test input pairs, then refines them based on
data-flow analysis to exclude irrelevant code that can contain errors,
and finally filters valid input pairs based on output relation asser-
tions. In Phase2, MR-Adopt leverages LLMs to generate candidate
input transformations based on the input pairs from Phase1. These
candidate transformations are then refined by removing irrelevant
code elements and adding dependencies, and assessed by applying
them to additional source inputs. Ultimately, MR-Adopt outputs
the most generalizable transformation function.

3.1 Phase 1: Input Pair Preparation
3.1.1 Input Pair Generation. In this step, MR-Adopt uses an LLM
to produce new source-followup input pairs. Specifically, an LLM
is requested to produce more input pairs by imitating a given input
pair within the context of an existing MTC (which includes the
input pair and developer-written assertions checking the output
relation) and corresponding methods under test.

Following the idea of the Chain of Thought strategy [41], MR-
Adopt prompts an LLM in two steps. The LLM is first asked to
generate source inputs, and then generate the corresponding follow-
up inputs for previously generated source inputs. We adopted this
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Figure 2: An overview of MR-Adopt.

1 ## New source input 1:
2 ```java
3 Date dateA = new DateTime("2023-12-31 23:59:59").toDate();
4 ```
5 ## New source input 2:
6 ```java
7 DateTime dateTimeA = new DateTime("2024-11-30 23:59:59");
8 Date dateA = dateTimeA.toDate();
9 ```
10 ## New source input 3:
11 ```java
12 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();
13 ```
14 ...(other inputs are ommitted)...

Listing 1: Examples of LLM-generated source inputs

step-by-step strategy because we found that LLMs perform better
when generating source and follow-up inputs sequentially rather
than generating entire input pairs at once.

We design the source input generation prompt following the
recent practice [46, 48]. Our prompt includes (i) a system message
about the role of a Java expert and the task to generate test inputs,
(ii) the code of methods under tests, (iii) the code of the MR-encoded
test case, and (iv) the output format. Such a prompt provides neces-
sary contextual information (ii and iii) and task description (i and
iv) to generate source inputs. Due to the page limit, the detailed
prompt templates and examples can be found on MR-Adopt’s web-
site [37]. Listing 1 shows several example source inputs generated
by GPT-3.5 with this prompt.

The follow-up input generation prompt is similar to the prompt
for source input generation. The difference is that we add the five
previously generated example source inputs to the prompt since the
current task is to prepare follow-up inputs for the example source
inputs.We also modify the task description and output format to ask
LLMs to prepare the source-followup input pairs, with the original
input pair in the MTC as the sample.

Following recent studies’ nucleus sampling [7, 13], MR-Adopt
repeats the above generation process five times with a temperature
setting of 0.2 [2, 4]. Listing 2 shows several example input pairs.

3.1.2 Input Pair Refinement. Similar to the observations in existing
studies [8], we found that LLM-generated codes often include irrel-
evant segments, which may introduce unnecessary errors. For in-
stance, the second input pair in Listing 2 includes an assertion state-
ment assertEquals(dateTimeB, is(plusOneDay(dateTimeA)));
alongside the desired input pair code. This assertion is irrelevant
to constructing dateA or dateB and incorrectly calls the method

1 The inferred relation between the source input `dateA` and the follow-
2 up input `dateB` is that `dateA` is one day ahead of `dateB`.
3 Let's construct the follow-up inputs for the new source inputs:
4 ## New input pair 1:
5 ```java
6 Date dateA = new DateTime("2024-12-31 23:59:59").toDate();
7 Date dateB = new DateTime("2025-01-01 23:59:59").toDate();
8 ```
9 ## New input pair 2:
10 ```java
11 DateTime dateTimeA = new DateTime("2024-11-30 23:59:59");
12 Date dateA = dateTimeA.toDate();
13 DateTime dateTimeB = new DateTime("2024-12-01 23:59:59");
14 Date dateB = dateTimeB.toDate();
15 assertEquals( dateTimeB, is(plusOneDay(dateTimeA)) );
16 ```
17 ## New input pair 3:
18 ```java
19 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();
20 Date dateB = new DateTime("2025-01-01 00:00:00").toDate();
21 ```
22 ...(the other input pairs are ommitted)...

Listing 2: Examples of LLM-generated input pairs

plusOneDay(Date date) with a DateTime object, resulting in a
type mismatch exception.

Our task focuses on constructing source and follow-up inputs.
To exclude irrelevant code and bypass unnecessary errors, we per-
form a data-flow analysis on the code returned by LLMs and build
a dependency graph . Then, MR-Adopt identifies the dependent
statements of the source and follow-up inputs and removes the
other statements. For example, in the second input pair of List-
ing 2, the source input dateA and follow-up input dateB depend
on objects dateTimeA and dateTimeB, respectively. Thus, the state-
ments (Lines 11-14) for constructing dateA, dateTimeA, dateB, and
dateTimeB are considered relevant, while the assertion statement
(Line 15) is excluded. Finally, MR-Adopt retains only the statements
relevant to constructing source and follow-up inputs, excluding all
other irrelevant statements from the LLM-generated code.

3.1.3 Input Pair Validation. The previous refinement step removes
the irrelevant code segments generated by LLMs and results in
candidate source-followup input pairs. However, a pair of inputs
still can be invalid if they violate the input relation of an encoded
MR. For example, the third input pair shown in Listing 2 is an
invalid test pair. The input relation of the embedded MR is that
“dateA is one day ahead of dateB”, while an LLM yields an input
pair of “2024-01-01” and “2025-01-01”, which does not follow the
one-day-after input relation. Such test case pairs do not match the
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1 @Test
2 void testToMediumDate(){
3 // LLM-generated new source input
4 Date dateA = new DateTime("2024-12-31 23:59:59").toDate();
5 // LLM-generated corresponding follow-up input
6 Date dateB = new DateTime("2025-01-01 23:59:59").toDate();
7 Date mediumA = DateUtils.toMediumDate(dateA);
8 Date mediumB = DateUtils.toMediumDate(dateB);
9 assertThat(mediumB, is(plusOneDay(mediumA)));
10 }

Listing 3: Validating an LLM-generated input pair

1 # OUTPUT FORMAT
2 Generate the transformation function by complementing the following
3 code skeleton.
4
5 ```java
6 public static Date transformation(Date day) {
7 // TODO
8 Date nextDay =
9 return nextDay;
10 }
11 ```

Listing 4: An example of output format in the prompt

intention of the desired input transformation and will mislead the
generation of transformations. In this step, we propose a method
to discard such invalid input pairs.

We use the output relation of an encoded MR to validate LLM-
generated input pairs. Specifically, MR-Adopt executes SUT on
generated input pairs and checks the outputs against the output re-
lation of an encoded MR. Note that the output relation is an explicit
reusable code in the MTC, i.e., the developer-written assertions
(Line 7 in Figure 1a). For each input pair, if its outputs of invok-
ing methods under test on the inputs pass the developer-written
assertions, MR-Adopt considers it a valid input pair. As shown in
Listing 3, if the outputs mediumA and mediumB pass the assertion
(Line 9), the inputs dateA and dateB are considered valid. This
step aims to filter out invalid input pairs generated by LLMs from
the example set. It could discard some source-followup input pairs
that match the input relation in fact. Factors such as the bugs in
a non-regression SUT may lead to false violations and mistaken
deletions of these pairs. However, the goal of the first phase is
to prepare examples that give more information about the input
relation for the second phase. Thus, it does not require complete

source-followup input pairs.

3.2 Phase 2: Transformation Generation

3.2.1 Transformation Generation. In this step, MR-Adopt asks an
LLM to generate candidate input transformation functions for an
encodedMR by giving the example source-followup input pairs. The
examples include the original hard-coded pair and the additional
ones produced in Phase1.

Similar to the prompt for input pair generation (Section 3.1.1), the
prompt for transformation generation consists of (i) a system mes-
sage, (ii) the code of methods under test, (iii) example input pairs,
(iv) the code of an MTC, and (v) the output format. The difference is
that the task changes from generating source-followup input pairs
to generating input transformation functions, whose parameter list
and return type have been specified. The detailed prompt template
and samples are available on MR-Adopt’s website [37].

Listing 4 shows the output format specified in the prompt, which
defines the skeleton of the input transformation function to gen-
erate. It includes the function name, parameter (i.e., source input)
types and names, and type of the return value (i.e., follow-up in-
put) 2. Following recent studies’ nucleus sampling [7, 13], for each
MR, MR-Adopt instructs an LLM to generate one input transfor-
mation function, and repeats the generation process five times with
a temperature setting of 0.2 [2, 4]. Finally, five candidate transfor-
mation functions can be generated.

MR-Adopt extracts the generated functions by identifying code
blocks wrapped with ``` and extracting the code that matches the
given transformation function skeleton. This ensures the generated
code conforms to the required format and can be easily integrated
into given MR-encoded test cases.

3.2.2 Transformation Refinement. Similar to the situation discussed
in Section 3.1.2, LLM-generated transformation functions can con-
tain irrelevant code, some of which can cause errors (e.g., invoking
non-existing APIs). To address this issue, MR-Adopt retrieves the
data-flow paths that end at the follow-up inputs. The code involved
in these paths is considered relevant, while other code is considered
irrelevant and excluded. For example, as shown in Listing 5, the
follow-up input nextDay depends on localDate, which further
depends on day. Therefore, the statements constructing nextDay
and localDate are retained, while irrelevant statements such as
Date dayAfter = day.after(1) are excluded.

1 The transformation function can be implemented as follows:
2
3 ```java
4 public static Date transformation(Date day) {
5 Date dayAfter = day.after(1); // non-exisitng API and irrelevant
6 LocalDate localdate = LocalDate.parse(day);
7 Date nextDay = localdate.plusDays(1).todate();
8 return nextDay;
9 }
10 ```

Listing 5: An example of LLM-generated transformation

After excluding irrelevant code, MR-Adopt analyzes and im-
ports dependencies needed by the generated transformation func-
tion. MR-Adopt first identifies the dependent classes’ names by
using a syntax analysis library JavaParser 3. Then, MR-Adopt re-
trieves potential classes defined or employed in source and imports
those whose names match the dependent classes. In the example in
Listing 5, the dependent internal class LocalDate will be imported.

3.2.3 Transformation Assessment. After refining candidate trans-
formations, MR-Adopt further assesses their quality by applying
them to new source inputs to construct new test cases. In this step,
MR-Adopt leverages new source inputs generated in Phase1 (Sec-
tion 3.1) to assess the generalizability of these candidates and then
selects the best one.

Specifically, MR-Adopt uses new source inputs as test inputs
and employs developer-written assertions (i.e., output relation as-
sertions) as test oracles. A transformation is considered applicable
to a given source input if (a) the input transformation function
can successfully generate a corresponding follow-up input without
throwing exceptions, and (b) the outputs from executing the meth-
ods under test pass the developer-written assertions. Consider the
2For MRs with multiple follow-up inputs, the return type is a list of objects.
3https://javaparser.org/
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1 @Test
2 void testToMediumDate(){
3 // new source input
4 Date dateA = new Date("2024-02-01 00:00:00");
5 // invoking generated transformation on new source input
6 Date dateB = transformation(dateA);
7 Date mediumA = DateUtils.toMediumDate(dateA);
8 Date mediumB = DateUtils.toMediumDate(dateB);
9 assertThat(mediumB, is(plusOneDay(mediumA)));
10 }

Listing 6: Validating an LLM-generated input transformation

with a new source input

1 public static Date transformation(Date day) {
2 int dayValue = day.getDate();
3 int monthValue = 1; // set the month to 1 since we don't know

which month the input represents↩→
4 int yearValue = day.getYear();
5 Date nextDay = new Date(year, month, day +1);
6 return nextDay;

Listing 7: An example of LLM-generated transformation

example in Listing 6. Given the source input dateA, if the follow-up
input dateB can be successfully generated and the outputs mediumA
and mediumB pass the assertion (Line 9), MR-Adopt considers this
candidate transformation applicable to input dateA. Conversely,
Listing 7 shows a failing transformation that limits the input to
January dates. MR-Adopt assesses all candidate transformation
functions using both new source inputs (if any) and the original
source input. It then selects the most generalizable transformation
that are applicable to the most inputs. In the case of a tie, MR-Adopt
will return the first generated one as the result.

4 EVALUATION

4.1 Research Questions

Our evaluation aims to answer the following research questions:

• RQ1: How effective is MR-Adopt in generating input transforma-

tions? This RQ compares the quality of the input transformation
functions generated by MR-Adopt and baselines to evaluate the
effectiveness of MR-Adopt in generating generalizable input
transformations for MRs encoded in MTCs.

• RQ2: How effective are MR-Adopt-generated input transforma-

tions in constructing follow-up inputs, compared with LLMs? This
RQ investigates whether explicitly generating input transforma-
tion functions is beneficial by comparing the quality of follow-up
inputs generated by transformation functions and those directly
generated by LLMs.

• RQ3:What is the contribution of each component in MR-Adopt for

generating input transformations? This RQ performs an ablation
study to reveal how each design contributes to generating input
transformations.

• RQ4: How useful are encoded MRs in enhancing test adequacy

with the generated input transformations? With input transfor-
mations generated from MR-Adopt, more encoded MRs can be
reused by incorporating new inputs to test more behaviors of
SUT. This RQ investigates the usefulness of such encoded MRs in
improving test adequacy to demonstrate the value of generating
input transformation for these encoded MRs.

4.2 Dataset

MR-encoded test cases (MTCs). We followed Xu et al. [44] to
collect the open-source GitHub Java projects receiving at least 200
stars to ensure the quality of the code source. Besides, we further
excluded the projects created before 01-April 2023 to ensure that
the experimental LLMs have not learned the during their training,
thereby reducing the potential for data leakage [2] Finally, we
collected 2,007 MTCs from qualified projects. From these MTCs, we
retained test cases that (i) can be successfully compiled, (ii) can be
successfully executed (i.e., passing developer-written assertions),
and (iii) contain MRs associated with exactly two method invoca-
tions (one for the source input and one for the follow-up input).
The third criterion serves to exclude the complex and less-frequent
MRs involving multiple groups of inputs [44]. Finally, we obtained
180 MTCs, including 54 with explicit input transformation func-
tions written by developers and 126 without such functions, which
follows a distribution consistent with Xu et al.’s finding [44].
Generation Tasks and Ground Truths. Based on the collected
180 MTCs, we prepared a dataset containing (i) 100 MTCs without
input transformations as tasks, and (ii) corresponding input trans-
formation functions as ground truths. The preparation process is as
follows. Firstly, we tried to utilize all 54 MTCs with ground truths,
i.e., developer-written input transformations. For each MTC, we
executed the input transformation on the hardcoded source input
to obtain the follow-up input. We prepared a task by replacing the
developer-written transformation with the hardcoded follow-up
input. Some MTCs whose follow-up input cannot be hardcoded
are excluded. For example, an MR for a text render class is “the
width of a text (source input) should not be greater than its bold
version (follow-up input)”. The follow-up input (bold text) can only
be generated by a method bold(), which is a developer-used trans-
formation program. Finally, we built 36 tasks from 36 MTCs with
developer-written transformations.

Next, we manually constructed ground truth input transforma-
tion functions for MTCs without developer-written input transfor-
mations. Specifically, 64 out of 126 MTCs without input transfor-
mations are randomly selected as tasks. For each task, one author
of this paper examined the SUT and its underlying MRs and then
created a transformation function that must apply to the original
source input and should be generalizable to new valid source inputs.
Another author reviewed these transformations, and disagreements
were discussed and resolved with consensus. This process took ap-
proximately 200 human hours. Details of this dataset can be found
on MR-Adopt’s website [37].

4.3 Environment and Large Language Models

Our experiments were conducted on machines equipped with three
RTX4090 GPUs, dual Intel Xeon E5-2683 v4 CPUs, and 256 GB
RAM.

The large language models used in our evaluation include GPT-
3.5 from OpenAI 4 and three open-source code models: Llama3-8B 5

4https://platform.openai.com/docs/models/
5https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct
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fromMeta, Deepseek-coder-7b 6 fromDeepSeek, and CodeQwen1.5-
7B-Chat 7 from Alibaba. We use these LLMs since they are popular
state-of-the-art 8 code models in well-known LLM families and
deployable at our machine.

4.4 Source Input Preparation

To evaluate the generated input transformations and LLMs, we need
new valid source inputs as a “test set”. As introduced in Section 2.1,
automatic test input generation techniques (such as Evosuite [9] or
Randoop [28]) can be employed to prepare source inputs. However,
we found these tools cannot generate any test inputs for many
MRs. This is because over 50% of experimental MRs’ inputs are
user-defined complex objects with complicated preconditions and
environments, which are hard to handle by test input generation
tools like Evosuite. This aligns with the observation in Xu et al.’s
study [44].

Recent studies show that LLMs are good test input generators
[46, 48]. Thus, in this study, we employed an LLM, Qwen, to gener-
ate new source inputs for evaluating transformations. As a reminder,
the LLM used for source input generation is different from those
used for generating input pairs (in MR-Adopt’s Phase1) and trans-
formation functions (in MR-Adopt’s Phase2), thereby mitigating
the circularity issue in the evaluation. We reused the prompt tem-
plate from MR-Adopt’s Phase1. Qwen was asked to generate five
source inputs at one time, and we repeated the generation process
ten times with a temperature setting of 0.2 to produce more source
inputs.

For the 100 MRs, Qwen generated a total of 5,355 new source
inputs. We first filtered out 3,058 duplicate inputs using string
matching. Next, we filtered valid source inputs by executing them
on corresponding ground truth transformations. A source input is
considered valid only if the ground truth transformation success-
fully generates a follow-up input, and the outputs of this source
input and corresponding follow-up input pass the developer-written
assertions (𝑅𝑜 ). Qwen failed to generate a new valid source input
for 5 MRs whose inputs are complex objects and have strict domain
specific constraints. Finally, we collected 1,366 valid source inputs,
averaging approximately 14.37 source inputs for each MR.

4.5 RQ1: Effectiveness of MR-Adopt

4.5.1 Experiment Setup. This RQ inspects the effectiveness of MR-
Adopt in generating input transformation functions by testing
whether they are compilable and how well they generalize to new
source inputs.

Baselines. To the best of our knowledge, no approach has been
proposed to generate input transformation functions for MRs in
different domains. Considering that LLMs are shown to be powerful
in code and test generation, we set directly prompting LLMs as
baselines. Specifically, we directly prompted GPT-3.5-turbo-0125
(shorten as GPT-3.5), Llama3-8B-Instruct (shorten as Llama3), and
Deepseek-coder-7b-instruct-v1.5 (shorten as Deepseek) with the
same template as that of MR-Adopt (Section 3.2.1). The knowledge

6https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
7https://qwenlm.github.io/blog/codeqwen1.5/
8https://evalplus.github.io/leaderboard.html

Table 1: Effectiveness of MR-Adopt in generating input

transformations for 100 MRs encoded in test cases

Metric (# Trans.)

Direct Prompting MR-Adopt

Llama3 Deepseek GPT-3.5 Llama3 Deepseek GPT-3.5

compilable 79 80 81 86 (+8.86%) 89 (+11.25%) 95 (+17.28%)

>0% generalizable 69 72 69 77 (+11.59%) 82 (+13.89%) 83 (+20.29%)

>75% generalizable 64 67 63 74 (+15.66%) 80 (+19.40%) 81 (+28.57%)

100% generalizable 57 60 54 68 (+19.30%) 71 (+18.33%) 72 (+33.33%)

# 𝑛% generalizable: the number of generated input transformations that can apply to
at least 𝑛% of source inputs.

cut-off dates of these modelsare September 2021 9, March 2023 10,
and March 2023 11, respectively, before the creation of MTCs in our
dataset (Section 4.2),

Configuration of baseline LLMs. Following recent studies [7],
we used the nucleus sampling [13] and repeated the generation
process five times for each task with a temperature setting of 0.2 [2,
4], and selected the best result for comparison. As a reminder, the
configuration of our method is introduced in Section 3.2.1.

Metrics. For this RQ, we introduced twometrics – (i) # compilable

transformations: the number of generated input transformations
that can be compiled successfully, and (ii) # 𝑛% generalizable trans-

formations: the number of generated input transformations that
can apply to at least 𝑛% of source inputs prepared in Section 4.4.
𝑛 = 0, 75, 100 represent at least one, upper-quartile, and all source
inputs, respectively. We consider a transformation 𝑡 applicable to a
source input 𝑥𝑠 when 𝑡 generates a follow-up input 𝑥 𝑓 for 𝑥𝑠 , such
that a correct SUT does not violate the output relation on the input
pair <𝑥𝑠 , 𝑥 𝑓 >.

4.5.2 Result. As shown in Table 1, MR-Adopt effectively produced
many compilable input transformation functions that well gener-
alize to prepared source inputs. We found that MR-Adopt works
best with GPT-3.5. Specifically, with GPT-3.5 (the last column),
MR-Adopt produced compilable transformations for 95 out of 100
MRs. Among them, 72 transformations were effectively applied to
all prepared source inputs. MR-Adopt also works well with the
open-source Llama3 and Deepseek, which generated 68 and 71 100%
generalizable transformations, respectively.

Besides, we found that some generated transformations general-
ize to some but not all source inputs prepared in our experiment.
Specifically, with GPT-3.5, 83 out of 95 compilable transformations
apply to at least one source input and 81 of them apply to >75%
prepared source inputs. Similar situations are found on Llama3
and Deepseek. We considered these transformations generated by
MR-Adopt still useful to some extent as they successfully prepare
some valid input pairs. Furthermore, we analyzed their issues and
found they could be settled with a more comprehensive prompt
to handle corner cases. The LLM-generated transformations can
handle common cases but struggle with edge cases. For example, an
ideal transformation should generate a higher version string for any
cases (e.g., transforming "1.0-A1" to "1.0-B1"), while the LLM-
generated one parses the version based on “Major.Minor.Revision”
convention (e.g., "1.0.1") and fail to handle cases like "1.0-A1".

9https://help.openai.com/en/articles/8555514-gpt-3-5-turbo-updates
10https://huggingface.co/NotAiLOL/Meta-Llama-3-8B-Instruct
11https://github.com/deepseek-ai/DeepSeek-Coder/issues/89

7



813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Effectiveness of MR-Adopt’s transformations in

constructing follow-up inputs for 1366 source inputs

+ means incorporating MR-Adopt’s input refinement procedure for LLMs’ answers.

MR-Adopt Llama3 Deepseek GPT-3.5 Improvement

1246 697 724 597 +72.10%∼+108.71%
MR-Adopt Llama3+ Deepseek+ GPT-3.5+ Improvement

1246 770 737 708 +61.82%∼+75.99%

Also, we found that 5, 14, and 11 transformations produced by
MR-Adopt with GPT-3.5, Llama3, and Deepseek cannot be com-
piled, respectively. Themain reasons include: (i) the generated trans-
formations invoke non-existing methods to generate the follow-up
input and (ii) they invoke APIs inaccessible due to permission re-
strictions (e.g., private methods). We also found that the compilable
yet not generalizable transformations are mainly because Phase1
failed to generate valid input pairs for these MRs. Then, LLMs
generated transformations overfitted to the given input pair.

We also compared the performance of MR-Adopt (5-7 columns)
with the baseline of directly prompting LLMs to generate trans-
formations (2-4 columns). We found that MR-Adopt generates
more compilable transformations. We attribute this to our design
of code refinement and assessment to extract reliable code from
LLMs’ responses. Moreover, MR-Adopt demonstrates substantial
improvements in generating transformations that are >75% and
100% generalizable, with increases ranging from 15.63% to 28.57%
and 18.33% to 33.33%, respectively. This confirms the usefulness of
our design of preparing more examples to help LLMs generate trans-
formations as well as the helpfulness of MR-Adopt’s refinement
and selection strategies.

Answer to RQ1: MR-Adopt significantly outperforms the base-
line LLMs across all metrics. Compared to directly prompting
LLMs, MR-Adopt achieves 17.3%∼33.33% improvement in gen-
erating 100% generalizable input transformations.

4.6 RQ2: Effectiveness of Input

Transformations

4.6.1 Experiment Setup. This RQ examined the quality of follow-
up inputs produced by input transformations generated by MR-
Adopt. We set LLMs as the baselines because they are off-the-shelf
black-box transformations that can generate follow-up inputs given
source inputs, as introduced in Section 3.1.1. We also included LLMs
enhanced with MR-Adopt’s refinement procedure (marked with +)
for comparison. This can reflect the effectiveness of MR-Adopt’s
refinement for input pairs preparation (Section 3.1.2).

Metric.We generated follow-up inputs by feeding the 1,366 pre-
pared source inputs (Section 4.4) to input transformations generated
by MR-Adopt and the vanilla LLM baselines. To compare the quali-
ties of the follow-up inputs produced by the MR-Adopt-generated
transformations and the baselines, we used the number of valid
follow-up inputs as the metric. Similar to Section 4.5, we consider
a follow-up input 𝑥 𝑓 valid if it and its corresponding source input
can pass developer-written output relation assertions.

4.6.2 Result. As shown in Table 2, when built with GPT-3.5, input
transformation functions generated by MR-Adopt produced valid
follow-up inputs for 1246 out of 1366 (91.22%) source inputs. The

high validity rate demonstrated that MR-Adopt contributed to
abundant useful source-followup input pairs.

In comparison, three vanilla LLMs only generated valid follow-
up inputs for 697 (51.02%), 724 (53.00%), and 597 (43.70%) source
inputs, respectively. MR-Adopt surpassed them by 72.10%-108.71%.
LLMs enhanced with MR-Adopt’s input refinement procedure
introduced in Section 3.1.2 (marked with +) worked better than
the vanilla LLMs. This confirmed the usefulness of our design to
refine the LLM-generated test inputs (Section 3.1.2). Meanwhile,MR-
Adopt’s transformations still outperformed the enhanced LLMs
by generating 61.82% more valid follow-up inputs than Llama3+,
69.06% more than Deepseek+, and 75.99% more than GPT-3.5+. This
significant performance gap highlights the effectiveness of MR-
Adopt’s transformation functions compared to the state-of-the-art
LLMs. It also evidenced the usefulness of our idea to codify the
input transformation by leveraging the code understanding and
generation abilities through the two-phase pipeline and preparation-
refinement-validation process.

We also summarized two major limitations of using vanilla LLMs
as black-box transformations based on our observation. Firstly,
LLMs can generate a follow-up input with a wrong value, which is
similar to the case in Listing 2. Another limitation is that LLMs often
fail to capture the constraints between multiple arguments of the
follow-up input. For instance, consider a method deserial(data,
size) to deserialize an ArrayList data with a given size. The
size should not be greater than the length of data. However, LLMs
may miss this constraint and generate invalid value for size. These
issues about value processing could be due to LLMs’ limited in-
ference ability. Instead, MR-Adopt asks LLMs to codify the input
transformation and uses the code to do calculation and processing,
which is recognized as a better way to exert LLMs’ abilities [19].
Besides, we argued that using LLMs as transformations can be
costly since we need to request LLMs for each source input. Mean-
while, MR-Adopt uses LLMs to generate transformations for once,
and there is no need to query LLMs When using the generated
transformations.

Answer to RQ2: MR-Adopt’s refinement step can effectively
enhance follow-up input generation, with up to 18.59% improve-
ment for GPT-3.5. Additionally, MR-Adopt-generated transfor-
mations can effectively generate follow-up inputs for 91.21%
source inputs, surpassing GPT-3.5+ by 75.99%.

4.7 RQ3: Ablation Study on MR-Adopt

4.7.1 Experiment Setup. We created three variants 𝑣1, 𝑣2, and 𝑣3 of
MR-Adopt by ablating three components to analyze the helpfulness
of these designs for generating generalizable input transformations.
We chose MR-Adopt built with GPT-3.5 which achieves the best
result in RQ1 (Section 4.5). The variants included:

𝑣1: MR-Adopt w/o additional input pairs. This variant used
only one source-followup input pair hard-coded in an MTC to guide
the input transformation generation. It did not use additional input
pairs generated in MR-Adopt’s Phase1 (Section 3.1).

𝑣2: MR-Adopt w/o refinement step. This variant disabled the
refinement step for generated input transformations in MR-Adopt
(Section 3.2.2).
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𝑣3: MR-Adopt w/o assessment step. This variant disabled
the assessment step for generated transformation functions (Sec-
tion 3.2.3). Instead, it randomly selected one of the compilable
transformation functions as the result.
Table 3: Contribution of each component in MR-Adopt

Metrics (# Trans.) MR-Adopt 𝑣1 : w/o 𝑣2 : w/o 𝑣3 : w/o
input pairs refinement assessment

compilable 95 87 (-8.42%) 93 (-2.10%) 95 (0.00%)
>0% generalizable 83 73 (-12.04%) 82 (-1.20%) 70 (-15.66%)
>75% generalizable 81 66 (-18.51%) 75 (7.40%) 59 (-27.16%)
100% generalizable 72 58 (-19.44%) 61 (-15.27%) 56 (-22.22%)

4.7.2 Result. As shown in Table 3, removing additional input pairs
(𝑣1) led to a 19.44% decrease in generating 100% generalizable trans-
formations. This indicated that additional input pairs could effec-
tively alleviate the problem of overfitting caused by the limited
number of examples in PBE [1, 11, 29], and help MR-Adopt gener-
ate more generalizable transformation.

Similarly, disabling refinement steps (𝑣2) reduced 15.27% input
transformations that generalize to 100% prepared inputs. This indi-
cated that some generated transformations have minor issues and
can be refined by excluding irrelevant code. Besides, disabling the
assessment step (𝑣3) decreased 22.22% input transformation gen-
eralizable to 100% prepared inputs. This indicated that even with
additional input pairs and the refinement step, LLMs still cannot
generate transformations that well match the input relation and
generalize to prepared inputs. The assessment step is necessary to
rank the most generalizable function.

Answer to RQ3: All three designs contribute to the effective-
ness of MR-Adopt in generating generalizable transformations.
The assessment procedure contributes the most, and additional
example input pairs contribute similarly.

4.8 RQ4: Usefulness of Input Transformations

4.8.1 Experiment Setup. In this RQ, we integrated the generated
input transformations into MTCs to construct generalized MRs
and measured how well such MRs enhanced test adequacy. This
revealed the practical usefulness of MR-Adopt’s transformations
in enhancing test adequacy.

New Test Cases Construction.We applied generalized MRs
incorporating generated transformations to the automatically gen-
erated source inputs introduced in Section 4.4 to obtain a set of new
test cases (denoted as M). We compare such test cases against two
baselines: (i) the developer-written test cases (i.e., MTCs) (denoted
as D) and (ii) test cases based on the LLM-generated source and
follow-up input pairs (denoted as L). Specifically, we combined the
prepared source inputs (Section 4.4) with valid follow-up inputs gen-
erated by Llama3+ which performed the best in RQ2 (Section 4.6).
Considering generalized MR based test cases and LLM-generated
input pairs based test cases are extended from developer-written
existing test cases, we followed Xu et al. [44] to analyze the test
adequacy improvement on top of developer-written test cases.

Metrics.Weused twometrics of test adequacy: (i) Line Coverage:
the percentage of lines of code in the target classes executed by test

cases, and (ii) Mutation Score: the percentage of mutants killed by
test cases.

Mutation Testing: We employed Pitest 12 to conduct mutation
testing. Each MR only focused on one or two methods under test
in the target class. To include the covered lines or killed mutants
in the methods intransitively invoked by MR-involved methods
for comparison, we employed Pitest to generate mutants targeting
all methods in a target class. Finally, Pitest successfully generated
4,388 mutants for 45 target classes covered by 88 MRs in the dataset
(Section 4.2). Pitest failed for the other 12 MRs’ classes because of
environmental issues (e.g., conflict dependencies).

Table 4: Enhancement of test adequacy from generalized MR

based test cases (M) on top of developer-written (D) and

LLM-generated input pairs (L) based test cases

Metrics

VS. D VS. D+L
D D+M Improve. D+L D+L+M Improve.

Line Coverage 0.2373 0.2625 +10.62% 0.2588 0.2698 +4.25%
Mutation Score 0.1322 0.1572 +18.91% 0.1710 0.1807 +5.67%

4.8.2 Result. As shown in Table 4, compared to developer-written
MTCs (D), incorporating new test cases constructed from gener-
alized MR (D+M) increased the line coverage by 10.62% and the
mutation score by 18.91%. This suggested that MR-Adopt could
enhance the test adequacy by integrating high-quality test oracles
(i.e., output relation of the encoded MR) with a diverse set of poten-
tial test input pairs of the MR (M). Although the developer-written
test inputs hard-coded in MTCs were carefully crafted and invalu-
able, each typically included one pair of test inputs and could not
sufficiently exercise the SUT’s behaviors. The new source inputs
generated by test generation techniques and the corresponding
follow-up inputs enabled by MR-Adopt may reach program states
not covered by the hard-coded inputs.

Besides, by analyzing the benefit of using MR-Adopt (D+L+M)
over the test suite enhanced by LLM-generated valid input pairs
(D+L), we could still observe 4.25% and 5.67% improvements in the
line coverage and the mutation score, respectively. This suggested
that even if an LLM could act as a black-box transformation to gen-
erate some valid source-followup inputs and reach more execution
states of SUT, MR-Adopt could generate input transformations that
apply to more source inputs and better enhance the test adequacy.

Answer to RQ4: Test cases constructed from generalized MRs
could achieve 13.52% and 9.42% increases in the line coverage and
mutation score, respectively, demonstrating generalized MRs’s
practical usefulness in enhancing test adequacy.

4.9 Threads to Validity

We identified potential threats to the validity of our experiments
and have taken measures to mitigate them.

Representativeness of Experimental Subjects. A potential
threat is whether our evaluation findings can generalize to different
projects. To mitigate this threat, we adopted the criteria from exist-
ing studies [14, 39, 44] to select high-quality and well-maintained
Java projects as representative subjects (Section 4.2) and evaluated
12https://pitest.org/
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our method on these projects. Besides, evaluating LLMs with sub-
jects seen during model training (known as the data leakage issue)
will make the findings biased [42]. To mitigate this threat, we col-
lected MR-encoded test cases created after the training cut-off date
of the experimental LLMs, as described in Section 4.2.

Representativeness of Experimental LLMs. Our method de-
pends on LLMs, and we also use LLMs as baselines. A potential
threat is whether our evaluation findings based on the selected
LLMs are representative. To mitigate this threat, we evaluated our
method with LLMs from three well-known LLM families, i.e., GPT-
3.5 from OpenAI, Llama3 from Meta, and Deepseek from DeepSeek.
They represent the state-of-the-art code LLMs (according to the
EvalPlus leaderborad) that can be deployed with the hardware ca-
pacity of our machine, as introduced in Section 4.3.

Quality of the Experimental Source Inputs. As introduced
in Section 4.4, we used an LLM to prepare new source inputs to
assess the generalizability of generated input transformations. Low-
quality source inputs may threaten the evaluation validity. To miti-
gate this issue, we employed another SOTA code LLM (i.e., Qwen)
which is not the experimental subject to prepare the source inputs.
We then use the ground truth input transformations to filter out
invalid source inputs.

Quality of Ground Truths. Besides directly using developer-
written input transformations in MTCs (if available) as ground
truths, we also manually prepared ground truths for MTCs without
input transformations. There is a potential threat regarding the
quality of our prepared ground truths. To mitigate this threat, two
authors (PhD students) proficient at MT and with more than four
years of Java programming experience implemented the ground
truths after understanding the intention of the SUTs and the en-
coded MRs. Specifically, a ground truth was developed by one par-
ticipant and reviewed by the other until a consensus was reached.
Furthermore, the developed ground truths are validated against the
original source input.

5 RELATEDWORK

5.1 Automated Identification of MRs.

Identification of proper MRs is a key step in applying MT to spe-
cific SUTs. To efficiently identify MRs, many automated approaches
have been proposed. Earlier approaches identify MRs based on a
set of predefined patterns [31, 52]. Zhang et al. [50] and Zhang et al.
[49] proposed search-based approaches to inferring MRs. Tsigkanos
et al. [38] proposed to use LLMs to identify variable relation and in-
put transformation in scientific software. These approaches mainly
synthesize MRs for specific domains. Shin et al. [33] proposed an
approach to generating executable MRs from requirement specifi-
cations using LLMs, but it still requires human effort to implement
supportive functions. Recently, Xu et al. [44] explored a new source
to automatically derive MRs. They synthesize MRs from existing
test cases where domain knowledge is embedded. This served as
an effective approach to reusing many encoded MRs. Such encoded
MRs are prevalent, but over 70% lack an input transformation func-
tion to support reusing them on more source inputs.

To reuse these invaluable MRs, in this paper, we propose MR-
Adopt to generate input transformation functions for such MRs.

Integrated with the input transformations, these MRs are found
helpful in enhancing test adequacy in our evaluation.

5.2 LLMs for Test Generation.

Researchers explored various LLM usages for test generation. Yuan
et al. [48] studied the performance and limitations of ChatGPT in
unit test generation. Xia et al. [43] built a fuzzer using LLMs as a
generator of realistic test inputs and an engine for mutation. Tang
et al. [36] compared the effectiveness of ChatGPT and Evosuite in
unit test generation. Lemieux et al. [18] and Yang et al. [45] tried
to promote the coverage of the tests generated by LLMs.

Different from these works, MR-Adopt does not use LLMs to
generate tests directly. Instead, it generates the input transforma-
tion for the encoded MRs and reuses such MRs to enable more
tests. In fact, using LLMs to generate correct and effective oracles
and produce a large number of tests is found challenging [48]. In
comparison, we reuse the human-written oracles in the encoded
MRs, which are generally more reliable than LLM-generated oracles.
Besides, MRs can be integrated with test input generation tools to
produce abundant tests.

5.3 Enhancing LLMs for Code Generation.

LLMs are found powerful in code generation [19, 21], attracting
numerous efforts to enhance the coding ability further. Some re-
searchers designed more effective strategies of pre-training [12, 20,
23] and fine-tuning [6, 32]. Researchers also prompted LLMs with
compilation messages to guide them to revise the generated code
[16, 27, 48] or built a coding agent [51] to enhance LLM’s code
generation ability.

In light of prompting with analogical reasoning [47], our work
guides LLMs to generate more examples, identify the intention,
and finally generate an input transformation matching the inten-
tion. Also, different from the approaches that rely purely on LLMs,
we enhance the generated input transformation’s quality by per-
forming data-flow analysis to exclude irrelevant code segments
from LLMs’ responses and ranking the generated transformation
functions based on validation with the output relation.

6 CONCLUSION

This paper presents MR-Adopt, an LLM-based approach to gen-
erate input transformations for MRs with hard-coded source and
follow-up inputs. MR-Adopt reuses the MRs that are encoded in
the test cases to generate more tests, achieving higher test adequacy.
Experimental result shows that MR-Adopt can effectively generate
generalizable transformations for 72% of encoded MRs, 33.33% more
then using vanilla GPT-3.5. 91.21% source inputs can be assigned
valid follow-up inputs by MR-Adopt, compared with 75.99% at best
baseline. Also, 10.62%+ more lines can be reached by MR-Adopt,
indicating its power for more exhaustive testing. Finally, an 18.91%
improvement in mutation score shows MR-Adopt’s potential in
bug revealing.

7 DATA AVAILABILITY

We released the implementation and all publicly available data at
https://mr-adopt.github.io/.
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