
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

MR-Adopt: Automatic Deduction of Input Transformation
Function for Metamorphic Testing

Anonymous Author(s)

ABSTRACT

While a recent study reveals that many developer-written test cases
can encode a reusable Metamorphic Relation (MR), over 70% of
them directly hard-code the source input and follow-up input in
the encoded relation. Such encoded MRs, which do not contain
an explicit input transformation to transform the source inputs to
corresponding follow-up inputs, cannot be reused with new source
inputs to enhance test adequacy.

In this paper, we propose MR-Adopt (Automatic Deduction Of

inPut Transformation) to automatically deduce the input transfor-
mation from the hard-coded source and follow-up inputs, aiming to
enable the encoded MRs to be reused with new source inputs. With
typically only one pair of source and follow-up inputs available in
an MR-encoded test case as the example, we leveraged LLMs to
understand the intention of the test case and generate additional ex-
amples of source-followup input pairs. This helps to guide the gen-
eration of input transformations generalizable to multiple source
inputs. Besides, to mitigate the issue that LLMs generate erroneous
code, we refine LLM-generated transformations by removing MR-
irrelevant code elements with data-flow analysis. Finally, we assess
candidate transformations based on encoded output relations and
select the best transformation as the result. Evaluation results show
that MR-Adopt can generate input transformations applicable to
all experimental source inputs for 72.00% of encoded MRs, which
is 33.33% more than using vanilla GPT-3.5. By incorporating MR-
Adopt-generated input transformations, encoded MR-based test
cases can effectively enhance the test adequacy, increasing the line
coverage and mutation score by 10.62% and 18.91%, respectively.

KEYWORDS

Software Testing, Metamorphic Testing, Metamorphic Relation,
Input Transformation, Code Generation, Large Language Models

1 INTRODUCTION

Metamorphic Testing (MT) is a powerful testing technique to ad-
dress both the test case generation and the oracle problem [5, 30].
Instead of assessing the outputs of individual inputs, MT validates
the behavior of a subject under test (SUT) against a series of Meta-
morphic Relations (MRs) for the SUT. Each MR defines an input

relation over a set of related test inputs and an output relation over
the expected outputs for those inputs. One outstanding benefit of
MT is that once an MR is identified, MT can leverage a wide range
of automatically generated test inputs (known as source inputs) to
exercise diverse program behaviors with no need to prepare oracles
for individual inputs [44]. MT has achieved success in detecting
critical faults for various software, such as compilers [17, 34] and
databases [22, 25].

Identifying appropriate MRs for a SUT is an essential step to ap-
plying MT. As such, there are studies focusing on the MR identifica-
tion. Earlier approaches either suffer from being labor-intensive and

specific to certain domains or pre-definedMR patterns [35, 49, 50] or
produce overly generic MRs that are ineffective for testing, as well
as recent LLM-based techniques [33, 38]. Recently, Xu et al. [44]
report that developers often encode domain knowledge in test
cases that exercise MRs. These encoded MRs are found able to
be generalized to many new inputs and serve as oracles to test
the original programs (or programs with similar functionalities)
more exhaustively, by integrating with automatic input generation
techniques [5, 30, 44].

However, Xu et al. [44] show that over 70% of 11,000MR-encoded
test cases (MTCs) in their dataset do not contain explicit input rela-
tions. Instead, developers often hard-code the source and follow-up
inputs. Figure 1a shows an MR-encoded test case intended to have
the follow-up input (dateB) one day after the source input (dateA),
but it simply hard-codes the two inputs. Without an explicit input
transformation program, follow-up inputs cannot be directly gen-
erated from automatically generated source inputs. This limitation
hinders the reuse of valuable encoded MRs to achieve automated
MT and enhance test adequacy. This paper aims to overcome

this obstacle by inferring an explicit input relation from a

given test case with its hard-coded input pairs. Specifically,
our goal is to construct an input transformation function that turns
a source input into a follow-up input as shown in Figure 1b. With
such input transformations, these encodedMRs can apply to a wider
range of test inputs to test SUTs more thoroughly (Figure 1c).

In fact, our goal can be viewed as a programming by example
(PBE) task, whose goal is to synthesize an input transformation
function that takes the example input (hard-coded source input)
and generates the example output (hard-coded follow-up input).
It is a non-trivial task as it requires a correct understanding of the
contextual information, such as the underlying relation between
hard-coded input pairs, corresponding output relations, and the
properties of SUT. Moreover, in our task, there is only one pair of
source and follow-up inputs available as the example [44]. Existing
PBE studies suggest that a small number of examples tend to make
a generated program overfitted to the given example instead of
realizing the true intention [1, 11, 29]. As such, it becomes notably
important in our task to effectively leverage the available contextual

information to guide PBE so that we can generate a generalizable
input transformation that matches the semantic of an encoded MR,
i.e., a generated transformation can apply to all potential source
inputs of this MR with its output relation.

In this paper, we propose MR-Adopt, an approach to automati-
cally generating input transformation functions for MRs encoded in
human-written test cases leveraging large language models (LLMs).
LLMs are trained on extensive code corpus encompassing a variety
of programs and tests from various domains and have shown effec-
tiveness in code understanding [10, 24, 26] and generation [3, 7, 15].
Thus, LLMs have the potential to understand the contextual infor-
mation and generate code based on such information. Our insight

1

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

is to leverage the code understanding ability of LLMs to mine the
intention of MR and input relation from the hard-coded test inputs
and SUT’s function, and take advantage of their code generation
ability to produce good input transformation code. Specifically,
we propose three designs to effectively make use of LLMs’ abilities.

Firstly, we observe that directly providing LLMs with contextual
information only results in around 50% generalizable transforma-
tions (Section 4.5). This is unsatisfactory. We need a pipeline that
allows LLMs to effectively express the input relation inferred from
the hard-coded inputs and generate transformation code. To re-

alize this goal, we design MR-Adopt with two phases. In Phase1,
we prompt LLMs to do analogical reasoning [40, 47] on the hard-
coded source-followup input pairs to infer new input pairs that
obey the same input relation. In Phase2, we use LLMs to generate
an input transformation function based on (i) the test input pair
hard-coded by developers and (ii) additional input pairs generated
by LLMs in Phase1. This design not only enables LLMs to generate
code in their familiar programming setup (where a task descrip-
tion and several examples are provided) [21], but also mitigates the
above-mentioned overfitting issue due to the limited number of
examples.

Secondly, we found that LLMs often generate task-irrelevant
code segments, of which some are even faulty. For example, when
we ask LLMs to generate a test input, they may return a code
including a wrong assertion statement. To remove irrelevant code

which can be buggy, MR-Adopt refines LLM-generated codes by
conducting data-flow analysis to extract the codes relevant to the
given task (i.e., additional input pairs and input transformation
functions).

Thirdly, to mitigate the errors in the relevant codes generated
by LLMs, we propose to leverage the developer-written output
relations (i.e., assertions) in MTCs as oracles to verify the generated
test pairs. We further employ additional inputs to identify an input
transformation with the best generalizability as the result.

We evaluated MR-Adopt with 100 developer-written test cases
that encode MRs. Experimental results show that MR-Adopt can
generate compilable input transformations for 95MRs, where 72 can
generalize to all potential source inputs prepared in our evaluation.
It generates 17.28% more compilable transformations and 33.33%
more generalizable transformations than directly prompting GPT-
3.5. Besides, we found that MR-Adopt-generated transformations
effectively produce follow-up inputs for 91.21% source inputs pre-
pared in our evaluation, representing a 122.10% improvement over
GPT-3.5 in generating corresponding follow-up inputs for given
source inputs. In addition, our ablation study suggests that all
three designs (i.e., additional input pairs, date-flow analysis based
refinement, and output-relation based validation) contribute to MR-
Adopt’s overall performance, with the validation and additional
example input pairs having the most significant impact. Experimen-
tal results also indicate that incorporating MRs equipped with input
transformations with automatically generated new inputs leads to a
10.62% increase in line coverage and an 18.91% increase in mutation
score on top of developer-written test cases. This demonstrates the
practical usefulness of MR-Adopt-generated transformations in
enhancing test adequacy.

Contribution. Our work makes the following contribution:

• To the best of our knowledge, we are the first to generate input
transformations for MRs encoded in test cases. With the gener-
ated input transformations, more encoded MRs can be reused to
enhance the test adequacy of SUTs.

• We design and implemented MR-Adopt, an LLM-based approach
to deducing input transformation function. MR-Adopt uses a
two-phase pipeline to instruct LLMs to generate example test
input pairs and then transformation functions. MR-Adopt incor-
porates a code refinement strategy based on data flow analysis
and a validation strategy to mitigate the faulty code generated
by LLMs.

• We extensively evaluate the effectiveness of MR-Adopt in gen-
erating input transformations. Evaluation results show that MR-
Adopt can generate effective input transformations, where 72%
input transformations are generalizable to all prepared source
inputs. Integrated with the generated input transformation, the
encoded MRs increase line coverage by 10.62% and mutation
score by 18.91%.

• We build a dataset with 100 encoded MRs from projects after 01-
April, 2023. We release this dataset and our replication package
on our website [37].

2 PRELIMINARIES

2.1 Metamorphic Testing

Metamorphic Testing (MT) validates a program 𝑃 using Metamor-
phic Relations (MRs). AnMRR can be expressed as a logical implica-
tion from an input relation R𝑖 to an output relation R𝑜 [5, 30, 44].

R = ⟨R𝑖 ,R𝑜 ⟩, where R𝑖

(
𝑥𝑠 , 𝑥 𝑓

)
=⇒ R𝑜

(
𝑦𝑠 , 𝑦𝑓

)
R𝑖 defines the rule to generate an additional test input (known as
the follow-up input 𝑥 𝑓) from a given test input (known as the source
input 𝑥𝑠), and R𝑜 defines the relation between the expected outputs
(𝑦𝑠 , 𝑦𝑓) for the source and follow-up inputs, respectively. For exam-
ple, given a program 𝑃 implementing the sine function, an MR can
be defined with the input relation R𝑖 as 𝑥 𝑓 =−𝑥𝑠 (∀𝑥𝑠 ∈ R) and the
output relation R𝑜 as 𝑦𝑓 =−𝑦𝑠 . This MR is based on the property
that 𝑃 (𝑥)=−𝑃 (−𝑥) should hold for a correctly implemented sine

function.
Given an MR R for a SUT 𝑃 , conducting MT for 𝑃 entails the fol-

lowing five steps: (i) constructing a source input 𝑥𝑠 , (ii) executing 𝑃
on 𝑥𝑠 and obtaining the source output 𝑦𝑠 , (iii) constructing a follow-
up input 𝑥 𝑓 that satisfies R𝑖 , (iv) executing 𝑃 on 𝑥 𝑓 and obtaining
the follow-up output 𝑦𝑓 , and (v) verifying if the two outputs 𝑦𝑠
and 𝑦𝑓 satisfy the output relation R𝑜 . Typically, a function referred
to as the input transformation is designed to implement R𝑖 to
generate 𝑥 𝑓 from the given 𝑥𝑠 , and 𝑥𝑠 can be written by developers
or automatically generated (e.g., random testing) [30, 44].

2.2 MR-Encoded Test Cases

MR-encoded test cases (MTCs), introduced by Xu et al. [44], refer to
the test cases whose embedded domain-specific knowledge suggests
useful MRs. Such MTCs are prevalent. In their study, over 11,000
MTCs were discovered from 701 open-source projects. An MTC
1This MR-encoded test case is crafted from org.hisp.dhis.util in project dhis2-
core, where long format date is “yyyy-mm-dd hh:mm:ss” and medium format date is
“yyyy-mm-dd”.

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

MR-Adopt: Automatic Deduction of Input Transformation Function for Metamorphic Testing ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

@Test
void testToMediumDate(){
 Date dateA = new Date("2024-01-01 00:00:00");

Date dateB = transformation(dateA);
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

(a) MTC featuring a hardcoded follow-up input

(b) MTC featuring a transformation-generated follow-up input

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

1 @Test
2 void testToMediumDate(){
3 Date dateA = new Date("2024-01-01 00:00:00");
4 Date dateB = new Date("2024-01-02 00:00:00");
5 Date mediumA = DateUtils.toMediumDate(dateA);
6 Date mediumB = DateUtils.toMediumDate(dateB);
7 assertThat(mediumB, is(plusOneDay(mediumA)));
8 }

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2023-12-31 23:59:00"));
}

@Test
void testToMediumDateN(){

testToMediumDateMR(new Date("2024-02-28 23:59:00"));
}

...

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

 Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

(c) Metamorphic testing by integrating an MR with diverse source inputs

/ …/

MR-TRANS: Deducing input transformation function

Applying transformation-complemented MR for new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >
Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!',	no	input	transformation:	!" = #'.@*AB')(!!)

@Test
void testToMediumDate(){
 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();

Date dateB = new DateTime("2024-01-02 00:00:00").toDate();
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

...

(c) Metamorphic testing by integrating an MR with diverse source inputs

/ …/

: Deducing input transformation function

Applying generalized MR to new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

void testToMediumDate(){
 Date dateA = new Date(“2024-01-01 00:00:00”);
 Date dateB = transformation(dateA);

 Date mediumA = DateUtils.toMediumDate(dateA);
 Date mediumB = DateUtils.toMediumDate(dateB);

 assertThat(mediumB, is(plusOneDay(mediumA)));
}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

@Test
void testToMediumDate(){
 Date dateA = new Datetime("2024-01-01 00:00:00").toDate();

Date dateB = transformation(dateA);
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

 Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2023-12-31 23:59:00"));
}

(a) An MR-encoded test case (MTC) featuring a hardcoded follow-up input
1

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

 Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

/ …/

@Test
void testToMediumDate(){
 Date dateA = new Date("2024-01-01 00:00:00");

Date dateB = transformation(dateA);
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

(a) MTC featuring a hardcoded follow-up input

(b) MTC featuring a transformation-generated follow-up input

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

1 @Test
2 void testToMediumDate(){
3 Date dateA = new Date("2024-01-01 00:00:00");
4 Date dateB = new Date("2024-01-02 00:00:00");
5 Date mediumA = DateUtils.toMediumDate(dateA);
6 Date mediumB = DateUtils.toMediumDate(dateB);
7 assertThat(mediumB, is(plusOneDay(mediumA)));
8 }

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2023-12-31 23:59:00"));
}

@Test
void testToMediumDateN(){

testToMediumDateMR(new Date("2024-02-28 23:59:00"));
}

...

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

 Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

(c) Metamorphic testing by integrating an MR with diverse source inputs

/ …/

MR-TRANS: Deducing input transformation function

Applying transformation-complemented MR for new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >
Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

@Test
void testToMediumDate(){
 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();

Date dateB = new DateTime("2024-01-02 00:00:00").toDate();
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

...

(c) Metamorphic testing by integrating an MR with diverse source inputs

MR-ADOPT: Deducing an input transformation function

Applying the generalized MR to new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

void testToMediumDate(){
 Date dateA = new Date(“2024-01-01 00:00:00”);
 Date dateB = transformation(dateA);

 Date mediumA = DateUtils.toMediumDate(dateA);
 Date mediumB = DateUtils.toMediumDate(dateB);

 assertThat(mediumB, is(plusOneDay(mediumA)));
}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

@Test
void testToMediumDate(){
 Date dateA = new Datetime("2024-01-01 00:00:00").toDate();

Date dateB = transformation(dateA);
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2024-02-29 23:59:00"));
}

(b) An MTC featuring a transformation-generated follow-up input

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

 Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

/ …/

@Test
void testToMediumDate(){
 Date dateA = new Date("2024-01-01 00:00:00");

Date dateB = transformation(dateA);
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

(a) MTC featuring a hardcoded follow-up input

(b) MTC featuring a transformation-generated follow-up input

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

1 @Test
2 void testToMediumDate(){
3 Date dateA = new Date("2024-01-01 00:00:00");
4 Date dateB = new Date("2024-01-02 00:00:00");
5 Date mediumA = DateUtils.toMediumDate(dateA);
6 Date mediumB = DateUtils.toMediumDate(dateB);
7 assertThat(mediumB, is(plusOneDay(mediumA)));
8 }

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2023-12-31 23:59:00"));
}

@Test
void testToMediumDateN(){

testToMediumDateMR(new Date("2024-02-28 23:59:00"));
}

...

void testToMediumDateMR(Date dateA){
Date dateB = transformation(dateA);

 Date mediumA = DateUtils.tomedium(dateA);
Date mediumB = DateUtils.tomedium(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

(c) Metamorphic testing by integrating an MR with diverse source inputs

/ …/

MR-TRANS: Deducing input transformation function

Applying transformation-complemented MR for new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >
Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

@Test
void testToMediumDate(){
 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();

Date dateB = new DateTime("2024-01-02 00:00:00").toDate();
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

...

(c) Metamorphic testing by integrating an MR with diverse source inputs

MR-ADOPT: Deducing an input transformation function

Applying the generalized MR to new inputs

Method under test: < #BN$&+,)O.#$ >
Source output E!: <)$&+,)P >, Source input !!:< &.#$P >
Follow-up output E":<)$&+,)H >, Follow-up input !":< &.#$H >

Metamorphic Relation: IF !" is one day after !!, THEN E" is one day after E!.
Hardcoded	!" ,	no	input	transformation:	!" = #'.@*AB')(!!)

void testToMediumDate(){
 Date dateA = new Date(“2024-01-01 00:00:00”);
 Date dateB = transformation(dateA);

 Date mediumA = DateUtils.toMediumDate(dateA);
 Date mediumB = DateUtils.toMediumDate(dateB);

 assertThat(mediumB, is(plusOneDay(mediumA)));
}

Date transformation(Date day){
LocalDate localdate = LocalDate.parse(day);
Date nextDay = localdate.plusDays(1).todate();
return nextDay;

}

@Test
void testToMediumDate(){
 Date dateA = new Datetime("2024-01-01 00:00:00").toDate();

Date dateB = transformation(dateA);
 Date mediumA = DateUtils.toMediumDate(dateA);

Date mediumB = DateUtils.toMediumDate(dateB);
assertThat(mediumB, is(plusOneDay(mediumA)));

}

@Test
void testToMediumDate1(){

testToMediumDateMR(new Date("2024-02-29 23:59:00"));
}

(c) Metamorphic testing by integrating an MR with diverse source inputs

Figure 1: Overview of MR-Adopt for Metamorphic Testing

can be considered as an instance of an MR, already implemented
with specific source and follow-up input values, invocations of
methods under test, and output relation assertions. Such encoded
MRs can be generalized to new inputs and facilitate automated MT
by incorporating automatic input generation techniques.

Consider the example in Figure 1. The encoded MR in this test
case is: “IF a date 𝑥1 in long format (“yyyy-mm-dd hh:mm:ss”) is one
day ahead of another long-format date 𝑥2 (R𝑖), THEN 𝑥1 in medium
format (“yyyy-mm-dd”) should also be one day ahead of medium-
format 𝑥2 (R𝑜)”. The SUTmethod toMediumDate is executed on the
source input dateA and the follow-up input dateB separately, and
the corresponding source and follow-up outputs are verified by the
assertion code assertThat(mediumB, is(plusOneDay(mediumA)),
which implements R𝑜 .

Such an implemented MR instance can be reused and general-
ized to many new inputs. However, the follow-up input dateB is
hardcoded with value "2024-01-02 00:00:00" instead of being
generated from dateA by an input transformation program. That
is, even if R𝑜 is explicitly coded, R𝑖 is implicit behind the specific
source and follow-up input values dateA and dateB. According to

Xu et al.’s study, over 70% of MR-encoded test cases lack explicitly
coded R𝑖 (i.e., input transformations). This limitation prevents
these MRs from being directly applied to new inputs automatically
generated by existing tools, e.g., Evosuite [9] and Randoop [28].
While these tools are proficient in generating diverse source in-
puts, they struggle with generating input pairs that satisfy an input
relation.

In this paper, we aim to address this limitation by deriving an
explicit input relation from a given test case and its hardcoded input
pairs. Specifically, our goal is to construct an input transforma-

tion function that converts a source input into a follow-up input,
as shown in Figure 1b. With such input transformations, embedded
MRs can be reused with a broader range of test inputs (Figure 1c)
to exercise more SUT’s behaviors, thereby enhancing the test ad-
equacy. One benefit of reusing the encoded MRs to prepare tests
is that we reuse the oracles (output relation assertions) written by
the developers in the MTCs, which could be fairly reliable.

3 MR-ADOPT

Figure 2 presents an overview of MR-Adopt. It takes as input a
pair of source and follow-up inputs and its context (i.e., an MR-
encoded test case and methods under test) and outputs an input
transformation function.

MR-Adopt works in a two-phase pipeline. In the first phase, it
generates additional source-follow-up input pairs and uses them
as examples to better describe the input relation, which provides
useful guidance for the generation of input transformations. In the
second phase, it generates input transformation functions based
on these example pairs. This setup is familiar to LLMs for code
generation tasks, as it includes not only a task description but
also several examples [21]. This two-phase pipeline provides more
information to effectively guide LLMs in generating generalized
transformations.

In each phase, MR-Adopt employs generation, refinement, and
validation procedures. In Phase1, MR-Adopt first leverages LLMs
to generate candidate test input pairs, then refines them based on
data-flow analysis to exclude irrelevant code that can contain errors,
and finally filters valid input pairs based on output relation asser-
tions. In Phase2, MR-Adopt leverages LLMs to generate candidate
input transformations based on the input pairs from Phase1. These
candidate transformations are then refined by removing irrelevant
code elements and adding dependencies, and assessed by applying
them to additional source inputs. Ultimately, MR-Adopt outputs
the most generalizable transformation function.

3.1 Phase 1: Input Pair Preparation
3.1.1 Input Pair Generation. In this step, MR-Adopt uses an LLM
to produce new source-followup input pairs. Specifically, an LLM
is requested to produce more input pairs by imitating a given input
pair within the context of an existing MTC (which includes the
input pair and developer-written assertions checking the output
relation) and corresponding methods under test.

Following the idea of the Chain of Thought strategy [41], MR-
Adopt prompts an LLM in two steps. The LLM is first asked to
generate source inputs, and then generate the corresponding follow-
up inputs for previously generated source inputs. We adopted this

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

MUT

I. LLM-based Input
Pairs Generation

Candidate Pairs

2. Inputs
Refinement

Refined Pairs

3. Inputs
Pairs Validation S''

S' F''F'

4. LLM-based
Transformation

Generation

Candidate
Transformations

Refined
Transformations

5. Transformation
RefinementTrans

Transformation

6. Transformation
Validation

Valid PairsMTC

S F

Phase1: Input Pairs Preparation

Phase2: Input Transformation Generation

Input relationS Source Input Input
TransformationF Follow-up Input

Figure 2: An overview of MR-Adopt.

1 ## New source input 1:
2 ```java
3 Date dateA = new DateTime("2023-12-31 23:59:59").toDate();
4 ```
5 ## New source input 2:
6 ```java
7 DateTime dateTimeA = new DateTime("2024-11-30 23:59:59");
8 Date dateA = dateTimeA.toDate();
9 ```
10 ## New source input 3:
11 ```java
12 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();
13 ```
14 ...(other inputs are ommitted)...

Listing 1: Examples of LLM-generated source inputs

step-by-step strategy because we found that LLMs perform better
when generating source and follow-up inputs sequentially rather
than generating entire input pairs at once.

We design the source input generation prompt following the
recent practice [46, 48]. Our prompt includes (i) a system message
about the role of a Java expert and the task to generate test inputs,
(ii) the code of methods under tests, (iii) the code of the MR-encoded
test case, and (iv) the output format. Such a prompt provides neces-
sary contextual information (ii and iii) and task description (i and
iv) to generate source inputs. Due to the page limit, the detailed
prompt templates and examples can be found on MR-Adopt’s web-
site [37]. Listing 1 shows several example source inputs generated
by GPT-3.5 with this prompt.

The follow-up input generation prompt is similar to the prompt
for source input generation. The difference is that we add the five
previously generated example source inputs to the prompt since the
current task is to prepare follow-up inputs for the example source
inputs.We also modify the task description and output format to ask
LLMs to prepare the source-followup input pairs, with the original
input pair in the MTC as the sample.

Following recent studies’ nucleus sampling [7, 13], MR-Adopt
repeats the above generation process five times with a temperature
setting of 0.2 [2, 4]. Listing 2 shows several example input pairs.

3.1.2 Input Pair Refinement. Similar to the observations in existing
studies [8], we found that LLM-generated codes often include irrel-
evant segments, which may introduce unnecessary errors. For in-
stance, the second input pair in Listing 2 includes an assertion state-
ment assertEquals(dateTimeB, is(plusOneDay(dateTimeA)));
alongside the desired input pair code. This assertion is irrelevant
to constructing dateA or dateB and incorrectly calls the method

1 The inferred relation between the source input `dateA` and the follow-
2 up input `dateB` is that `dateA` is one day ahead of `dateB`.
3 Let's construct the follow-up inputs for the new source inputs:
4 ## New input pair 1:
5 ```java
6 Date dateA = new DateTime("2024-12-31 23:59:59").toDate();
7 Date dateB = new DateTime("2025-01-01 23:59:59").toDate();
8 ```
9 ## New input pair 2:
10 ```java
11 DateTime dateTimeA = new DateTime("2024-11-30 23:59:59");
12 Date dateA = dateTimeA.toDate();
13 DateTime dateTimeB = new DateTime("2024-12-01 23:59:59");
14 Date dateB = dateTimeB.toDate();
15 assertEquals(dateTimeB, is(plusOneDay(dateTimeA)));
16 ```
17 ## New input pair 3:
18 ```java
19 Date dateA = new DateTime("2024-01-01 00:00:00").toDate();
20 Date dateB = new DateTime("2025-01-01 00:00:00").toDate();
21 ```
22 ...(the other input pairs are ommitted)...

Listing 2: Examples of LLM-generated input pairs

plusOneDay(Date date) with a DateTime object, resulting in a
type mismatch exception.

Our task focuses on constructing source and follow-up inputs.
To exclude irrelevant code and bypass unnecessary errors, we per-
form a data-flow analysis on the code returned by LLMs and build
a dependency graph . Then, MR-Adopt identifies the dependent
statements of the source and follow-up inputs and removes the
other statements. For example, in the second input pair of List-
ing 2, the source input dateA and follow-up input dateB depend
on objects dateTimeA and dateTimeB, respectively. Thus, the state-
ments (Lines 11-14) for constructing dateA, dateTimeA, dateB, and
dateTimeB are considered relevant, while the assertion statement
(Line 15) is excluded. Finally, MR-Adopt retains only the statements
relevant to constructing source and follow-up inputs, excluding all
other irrelevant statements from the LLM-generated code.

3.1.3 Input Pair Validation. The previous refinement step removes
the irrelevant code segments generated by LLMs and results in
candidate source-followup input pairs. However, a pair of inputs
still can be invalid if they violate the input relation of an encoded
MR. For example, the third input pair shown in Listing 2 is an
invalid test pair. The input relation of the embedded MR is that
“dateA is one day ahead of dateB”, while an LLM yields an input
pair of “2024-01-01” and “2025-01-01”, which does not follow the
one-day-after input relation. Such test case pairs do not match the

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

MR-Adopt: Automatic Deduction of Input Transformation Function for Metamorphic Testing ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

1 @Test
2 void testToMediumDate(){
3 // LLM-generated new source input
4 Date dateA = new DateTime("2024-12-31 23:59:59").toDate();
5 // LLM-generated corresponding follow-up input
6 Date dateB = new DateTime("2025-01-01 23:59:59").toDate();
7 Date mediumA = DateUtils.toMediumDate(dateA);
8 Date mediumB = DateUtils.toMediumDate(dateB);
9 assertThat(mediumB, is(plusOneDay(mediumA)));
10 }

Listing 3: Validating an LLM-generated input pair

1 # OUTPUT FORMAT
2 Generate the transformation function by complementing the following
3 code skeleton.
4
5 ```java
6 public static Date transformation(Date day) {
7 // TODO
8 Date nextDay =
9 return nextDay;
10 }
11 ```

Listing 4: An example of output format in the prompt

intention of the desired input transformation and will mislead the
generation of transformations. In this step, we propose a method
to discard such invalid input pairs.

We use the output relation of an encoded MR to validate LLM-
generated input pairs. Specifically, MR-Adopt executes SUT on
generated input pairs and checks the outputs against the output re-
lation of an encoded MR. Note that the output relation is an explicit
reusable code in the MTC, i.e., the developer-written assertions
(Line 7 in Figure 1a). For each input pair, if its outputs of invok-
ing methods under test on the inputs pass the developer-written
assertions, MR-Adopt considers it a valid input pair. As shown in
Listing 3, if the outputs mediumA and mediumB pass the assertion
(Line 9), the inputs dateA and dateB are considered valid. This
step aims to filter out invalid input pairs generated by LLMs from
the example set. It could discard some source-followup input pairs
that match the input relation in fact. Factors such as the bugs in
a non-regression SUT may lead to false violations and mistaken
deletions of these pairs. However, the goal of the first phase is
to prepare examples that give more information about the input
relation for the second phase. Thus, it does not require complete

source-followup input pairs.

3.2 Phase 2: Transformation Generation

3.2.1 Transformation Generation. In this step, MR-Adopt asks an
LLM to generate candidate input transformation functions for an
encodedMR by giving the example source-followup input pairs. The
examples include the original hard-coded pair and the additional
ones produced in Phase1.

Similar to the prompt for input pair generation (Section 3.1.1), the
prompt for transformation generation consists of (i) a system mes-
sage, (ii) the code of methods under test, (iii) example input pairs,
(iv) the code of an MTC, and (v) the output format. The difference is
that the task changes from generating source-followup input pairs
to generating input transformation functions, whose parameter list
and return type have been specified. The detailed prompt template
and samples are available on MR-Adopt’s website [37].

Listing 4 shows the output format specified in the prompt, which
defines the skeleton of the input transformation function to gen-
erate. It includes the function name, parameter (i.e., source input)
types and names, and type of the return value (i.e., follow-up in-
put) 2. Following recent studies’ nucleus sampling [7, 13], for each
MR, MR-Adopt instructs an LLM to generate one input transfor-
mation function, and repeats the generation process five times with
a temperature setting of 0.2 [2, 4]. Finally, five candidate transfor-
mation functions can be generated.

MR-Adopt extracts the generated functions by identifying code
blocks wrapped with ``` and extracting the code that matches the
given transformation function skeleton. This ensures the generated
code conforms to the required format and can be easily integrated
into given MR-encoded test cases.

3.2.2 Transformation Refinement. Similar to the situation discussed
in Section 3.1.2, LLM-generated transformation functions can con-
tain irrelevant code, some of which can cause errors (e.g., invoking
non-existing APIs). To address this issue, MR-Adopt retrieves the
data-flow paths that end at the follow-up inputs. The code involved
in these paths is considered relevant, while other code is considered
irrelevant and excluded. For example, as shown in Listing 5, the
follow-up input nextDay depends on localDate, which further
depends on day. Therefore, the statements constructing nextDay
and localDate are retained, while irrelevant statements such as
Date dayAfter = day.after(1) are excluded.

1 The transformation function can be implemented as follows:
2
3 ```java
4 public static Date transformation(Date day) {
5 Date dayAfter = day.after(1); // non-exisitng API and irrelevant
6 LocalDate localdate = LocalDate.parse(day);
7 Date nextDay = localdate.plusDays(1).todate();
8 return nextDay;
9 }
10 ```

Listing 5: An example of LLM-generated transformation

After excluding irrelevant code, MR-Adopt analyzes and im-
ports dependencies needed by the generated transformation func-
tion. MR-Adopt first identifies the dependent classes’ names by
using a syntax analysis library JavaParser 3. Then, MR-Adopt re-
trieves potential classes defined or employed in source and imports
those whose names match the dependent classes. In the example in
Listing 5, the dependent internal class LocalDate will be imported.

3.2.3 Transformation Assessment. After refining candidate trans-
formations, MR-Adopt further assesses their quality by applying
them to new source inputs to construct new test cases. In this step,
MR-Adopt leverages new source inputs generated in Phase1 (Sec-
tion 3.1) to assess the generalizability of these candidates and then
selects the best one.

Specifically, MR-Adopt uses new source inputs as test inputs
and employs developer-written assertions (i.e., output relation as-
sertions) as test oracles. A transformation is considered applicable
to a given source input if (a) the input transformation function
can successfully generate a corresponding follow-up input without
throwing exceptions, and (b) the outputs from executing the meth-
ods under test pass the developer-written assertions. Consider the
2For MRs with multiple follow-up inputs, the return type is a list of objects.
3https://javaparser.org/

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

1 @Test
2 void testToMediumDate(){
3 // new source input
4 Date dateA = new Date("2024-02-01 00:00:00");
5 // invoking generated transformation on new source input
6 Date dateB = transformation(dateA);
7 Date mediumA = DateUtils.toMediumDate(dateA);
8 Date mediumB = DateUtils.toMediumDate(dateB);
9 assertThat(mediumB, is(plusOneDay(mediumA)));
10 }

Listing 6: Validating an LLM-generated input transformation

with a new source input

1 public static Date transformation(Date day) {
2 int dayValue = day.getDate();
3 int monthValue = 1; // set the month to 1 since we don't know

which month the input represents↩→
4 int yearValue = day.getYear();
5 Date nextDay = new Date(year, month, day +1);
6 return nextDay;

Listing 7: An example of LLM-generated transformation

example in Listing 6. Given the source input dateA, if the follow-up
input dateB can be successfully generated and the outputs mediumA
and mediumB pass the assertion (Line 9), MR-Adopt considers this
candidate transformation applicable to input dateA. Conversely,
Listing 7 shows a failing transformation that limits the input to
January dates. MR-Adopt assesses all candidate transformation
functions using both new source inputs (if any) and the original
source input. It then selects the most generalizable transformation
that are applicable to the most inputs. In the case of a tie, MR-Adopt
will return the first generated one as the result.

4 EVALUATION

4.1 Research Questions

Our evaluation aims to answer the following research questions:

• RQ1: How effective is MR-Adopt in generating input transforma-

tions? This RQ compares the quality of the input transformation
functions generated by MR-Adopt and baselines to evaluate the
effectiveness of MR-Adopt in generating generalizable input
transformations for MRs encoded in MTCs.

• RQ2: How effective are MR-Adopt-generated input transforma-

tions in constructing follow-up inputs, compared with LLMs? This
RQ investigates whether explicitly generating input transforma-
tion functions is beneficial by comparing the quality of follow-up
inputs generated by transformation functions and those directly
generated by LLMs.

• RQ3:What is the contribution of each component in MR-Adopt for

generating input transformations? This RQ performs an ablation
study to reveal how each design contributes to generating input
transformations.

• RQ4: How useful are encoded MRs in enhancing test adequacy

with the generated input transformations? With input transfor-
mations generated from MR-Adopt, more encoded MRs can be
reused by incorporating new inputs to test more behaviors of
SUT. This RQ investigates the usefulness of such encoded MRs in
improving test adequacy to demonstrate the value of generating
input transformation for these encoded MRs.

4.2 Dataset

MR-encoded test cases (MTCs). We followed Xu et al. [44] to
collect the open-source GitHub Java projects receiving at least 200
stars to ensure the quality of the code source. Besides, we further
excluded the projects created before 01-April 2023 to ensure that
the experimental LLMs have not learned the during their training,
thereby reducing the potential for data leakage [2] Finally, we
collected 2,007 MTCs from qualified projects. From these MTCs, we
retained test cases that (i) can be successfully compiled, (ii) can be
successfully executed (i.e., passing developer-written assertions),
and (iii) contain MRs associated with exactly two method invoca-
tions (one for the source input and one for the follow-up input).
The third criterion serves to exclude the complex and less-frequent
MRs involving multiple groups of inputs [44]. Finally, we obtained
180 MTCs, including 54 with explicit input transformation func-
tions written by developers and 126 without such functions, which
follows a distribution consistent with Xu et al.’s finding [44].
Generation Tasks and Ground Truths. Based on the collected
180 MTCs, we prepared a dataset containing (i) 100 MTCs without
input transformations as tasks, and (ii) corresponding input trans-
formation functions as ground truths. The preparation process is as
follows. Firstly, we tried to utilize all 54 MTCs with ground truths,
i.e., developer-written input transformations. For each MTC, we
executed the input transformation on the hardcoded source input
to obtain the follow-up input. We prepared a task by replacing the
developer-written transformation with the hardcoded follow-up
input. Some MTCs whose follow-up input cannot be hardcoded
are excluded. For example, an MR for a text render class is “the
width of a text (source input) should not be greater than its bold
version (follow-up input)”. The follow-up input (bold text) can only
be generated by a method bold(), which is a developer-used trans-
formation program. Finally, we built 36 tasks from 36 MTCs with
developer-written transformations.

Next, we manually constructed ground truth input transforma-
tion functions for MTCs without developer-written input transfor-
mations. Specifically, 64 out of 126 MTCs without input transfor-
mations are randomly selected as tasks. For each task, one author
of this paper examined the SUT and its underlying MRs and then
created a transformation function that must apply to the original
source input and should be generalizable to new valid source inputs.
Another author reviewed these transformations, and disagreements
were discussed and resolved with consensus. This process took ap-
proximately 200 human hours. Details of this dataset can be found
on MR-Adopt’s website [37].

4.3 Environment and Large Language Models

Our experiments were conducted on machines equipped with three
RTX4090 GPUs, dual Intel Xeon E5-2683 v4 CPUs, and 256 GB
RAM.

The large language models used in our evaluation include GPT-
3.5 from OpenAI 4 and three open-source code models: Llama3-8B 5

4https://platform.openai.com/docs/models/
5https://huggingface.co/meta-llama/Meta-Llama-3-8B-Instruct

6

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

MR-Adopt: Automatic Deduction of Input Transformation Function for Metamorphic Testing ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

fromMeta, Deepseek-coder-7b 6 fromDeepSeek, and CodeQwen1.5-
7B-Chat 7 from Alibaba. We use these LLMs since they are popular
state-of-the-art 8 code models in well-known LLM families and
deployable at our machine.

4.4 Source Input Preparation

To evaluate the generated input transformations and LLMs, we need
new valid source inputs as a “test set”. As introduced in Section 2.1,
automatic test input generation techniques (such as Evosuite [9] or
Randoop [28]) can be employed to prepare source inputs. However,
we found these tools cannot generate any test inputs for many
MRs. This is because over 50% of experimental MRs’ inputs are
user-defined complex objects with complicated preconditions and
environments, which are hard to handle by test input generation
tools like Evosuite. This aligns with the observation in Xu et al.’s
study [44].

Recent studies show that LLMs are good test input generators
[46, 48]. Thus, in this study, we employed an LLM, Qwen, to gener-
ate new source inputs for evaluating transformations. As a reminder,
the LLM used for source input generation is different from those
used for generating input pairs (in MR-Adopt’s Phase1) and trans-
formation functions (in MR-Adopt’s Phase2), thereby mitigating
the circularity issue in the evaluation. We reused the prompt tem-
plate from MR-Adopt’s Phase1. Qwen was asked to generate five
source inputs at one time, and we repeated the generation process
ten times with a temperature setting of 0.2 to produce more source
inputs.

For the 100 MRs, Qwen generated a total of 5,355 new source
inputs. We first filtered out 3,058 duplicate inputs using string
matching. Next, we filtered valid source inputs by executing them
on corresponding ground truth transformations. A source input is
considered valid only if the ground truth transformation success-
fully generates a follow-up input, and the outputs of this source
input and corresponding follow-up input pass the developer-written
assertions (𝑅𝑜). Qwen failed to generate a new valid source input
for 5 MRs whose inputs are complex objects and have strict domain
specific constraints. Finally, we collected 1,366 valid source inputs,
averaging approximately 14.37 source inputs for each MR.

4.5 RQ1: Effectiveness of MR-Adopt

4.5.1 Experiment Setup. This RQ inspects the effectiveness of MR-
Adopt in generating input transformation functions by testing
whether they are compilable and how well they generalize to new
source inputs.

Baselines. To the best of our knowledge, no approach has been
proposed to generate input transformation functions for MRs in
different domains. Considering that LLMs are shown to be powerful
in code and test generation, we set directly prompting LLMs as
baselines. Specifically, we directly prompted GPT-3.5-turbo-0125
(shorten as GPT-3.5), Llama3-8B-Instruct (shorten as Llama3), and
Deepseek-coder-7b-instruct-v1.5 (shorten as Deepseek) with the
same template as that of MR-Adopt (Section 3.2.1). The knowledge

6https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
7https://qwenlm.github.io/blog/codeqwen1.5/
8https://evalplus.github.io/leaderboard.html

Table 1: Effectiveness of MR-Adopt in generating input

transformations for 100 MRs encoded in test cases

Metric (# Trans.)

Direct Prompting MR-Adopt

Llama3 Deepseek GPT-3.5 Llama3 Deepseek GPT-3.5

compilable 79 80 81 86 (+8.86%) 89 (+11.25%) 95 (+17.28%)

>0% generalizable 69 72 69 77 (+11.59%) 82 (+13.89%) 83 (+20.29%)

>75% generalizable 64 67 63 74 (+15.66%) 80 (+19.40%) 81 (+28.57%)

100% generalizable 57 60 54 68 (+19.30%) 71 (+18.33%) 72 (+33.33%)

𝑛% generalizable: the number of generated input transformations that can apply to
at least 𝑛% of source inputs.

cut-off dates of these modelsare September 2021 9, March 2023 10,
and March 2023 11, respectively, before the creation of MTCs in our
dataset (Section 4.2),

Configuration of baseline LLMs. Following recent studies [7],
we used the nucleus sampling [13] and repeated the generation
process five times for each task with a temperature setting of 0.2 [2,
4], and selected the best result for comparison. As a reminder, the
configuration of our method is introduced in Section 3.2.1.

Metrics. For this RQ, we introduced twometrics – (i) # compilable

transformations: the number of generated input transformations
that can be compiled successfully, and (ii) # 𝑛% generalizable trans-

formations: the number of generated input transformations that
can apply to at least 𝑛% of source inputs prepared in Section 4.4.
𝑛 = 0, 75, 100 represent at least one, upper-quartile, and all source
inputs, respectively. We consider a transformation 𝑡 applicable to a
source input 𝑥𝑠 when 𝑡 generates a follow-up input 𝑥 𝑓 for 𝑥𝑠 , such
that a correct SUT does not violate the output relation on the input
pair <𝑥𝑠 , 𝑥 𝑓 >.

4.5.2 Result. As shown in Table 1, MR-Adopt effectively produced
many compilable input transformation functions that well gener-
alize to prepared source inputs. We found that MR-Adopt works
best with GPT-3.5. Specifically, with GPT-3.5 (the last column),
MR-Adopt produced compilable transformations for 95 out of 100
MRs. Among them, 72 transformations were effectively applied to
all prepared source inputs. MR-Adopt also works well with the
open-source Llama3 and Deepseek, which generated 68 and 71 100%
generalizable transformations, respectively.

Besides, we found that some generated transformations general-
ize to some but not all source inputs prepared in our experiment.
Specifically, with GPT-3.5, 83 out of 95 compilable transformations
apply to at least one source input and 81 of them apply to >75%
prepared source inputs. Similar situations are found on Llama3
and Deepseek. We considered these transformations generated by
MR-Adopt still useful to some extent as they successfully prepare
some valid input pairs. Furthermore, we analyzed their issues and
found they could be settled with a more comprehensive prompt
to handle corner cases. The LLM-generated transformations can
handle common cases but struggle with edge cases. For example, an
ideal transformation should generate a higher version string for any
cases (e.g., transforming "1.0-A1" to "1.0-B1"), while the LLM-
generated one parses the version based on “Major.Minor.Revision”
convention (e.g., "1.0.1") and fail to handle cases like "1.0-A1".

9https://help.openai.com/en/articles/8555514-gpt-3-5-turbo-updates
10https://huggingface.co/NotAiLOL/Meta-Llama-3-8B-Instruct
11https://github.com/deepseek-ai/DeepSeek-Coder/issues/89

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Table 2: Effectiveness of MR-Adopt’s transformations in

constructing follow-up inputs for 1366 source inputs

+ means incorporating MR-Adopt’s input refinement procedure for LLMs’ answers.

MR-Adopt Llama3 Deepseek GPT-3.5 Improvement

1246 697 724 597 +72.10%∼+108.71%
MR-Adopt Llama3+ Deepseek+ GPT-3.5+ Improvement

1246 770 737 708 +61.82%∼+75.99%

Also, we found that 5, 14, and 11 transformations produced by
MR-Adopt with GPT-3.5, Llama3, and Deepseek cannot be com-
piled, respectively. Themain reasons include: (i) the generated trans-
formations invoke non-existing methods to generate the follow-up
input and (ii) they invoke APIs inaccessible due to permission re-
strictions (e.g., private methods). We also found that the compilable
yet not generalizable transformations are mainly because Phase1
failed to generate valid input pairs for these MRs. Then, LLMs
generated transformations overfitted to the given input pair.

We also compared the performance of MR-Adopt (5-7 columns)
with the baseline of directly prompting LLMs to generate trans-
formations (2-4 columns). We found that MR-Adopt generates
more compilable transformations. We attribute this to our design
of code refinement and assessment to extract reliable code from
LLMs’ responses. Moreover, MR-Adopt demonstrates substantial
improvements in generating transformations that are >75% and
100% generalizable, with increases ranging from 15.63% to 28.57%
and 18.33% to 33.33%, respectively. This confirms the usefulness of
our design of preparing more examples to help LLMs generate trans-
formations as well as the helpfulness of MR-Adopt’s refinement
and selection strategies.

Answer to RQ1: MR-Adopt significantly outperforms the base-
line LLMs across all metrics. Compared to directly prompting
LLMs, MR-Adopt achieves 17.3%∼33.33% improvement in gen-
erating 100% generalizable input transformations.

4.6 RQ2: Effectiveness of Input

Transformations

4.6.1 Experiment Setup. This RQ examined the quality of follow-
up inputs produced by input transformations generated by MR-
Adopt. We set LLMs as the baselines because they are off-the-shelf
black-box transformations that can generate follow-up inputs given
source inputs, as introduced in Section 3.1.1. We also included LLMs
enhanced with MR-Adopt’s refinement procedure (marked with +)
for comparison. This can reflect the effectiveness of MR-Adopt’s
refinement for input pairs preparation (Section 3.1.2).

Metric.We generated follow-up inputs by feeding the 1,366 pre-
pared source inputs (Section 4.4) to input transformations generated
by MR-Adopt and the vanilla LLM baselines. To compare the quali-
ties of the follow-up inputs produced by the MR-Adopt-generated
transformations and the baselines, we used the number of valid
follow-up inputs as the metric. Similar to Section 4.5, we consider
a follow-up input 𝑥 𝑓 valid if it and its corresponding source input
can pass developer-written output relation assertions.

4.6.2 Result. As shown in Table 2, when built with GPT-3.5, input
transformation functions generated by MR-Adopt produced valid
follow-up inputs for 1246 out of 1366 (91.22%) source inputs. The

high validity rate demonstrated that MR-Adopt contributed to
abundant useful source-followup input pairs.

In comparison, three vanilla LLMs only generated valid follow-
up inputs for 697 (51.02%), 724 (53.00%), and 597 (43.70%) source
inputs, respectively. MR-Adopt surpassed them by 72.10%-108.71%.
LLMs enhanced with MR-Adopt’s input refinement procedure
introduced in Section 3.1.2 (marked with +) worked better than
the vanilla LLMs. This confirmed the usefulness of our design to
refine the LLM-generated test inputs (Section 3.1.2). Meanwhile,MR-
Adopt’s transformations still outperformed the enhanced LLMs
by generating 61.82% more valid follow-up inputs than Llama3+,
69.06% more than Deepseek+, and 75.99% more than GPT-3.5+. This
significant performance gap highlights the effectiveness of MR-
Adopt’s transformation functions compared to the state-of-the-art
LLMs. It also evidenced the usefulness of our idea to codify the
input transformation by leveraging the code understanding and
generation abilities through the two-phase pipeline and preparation-
refinement-validation process.

We also summarized two major limitations of using vanilla LLMs
as black-box transformations based on our observation. Firstly,
LLMs can generate a follow-up input with a wrong value, which is
similar to the case in Listing 2. Another limitation is that LLMs often
fail to capture the constraints between multiple arguments of the
follow-up input. For instance, consider a method deserial(data,
size) to deserialize an ArrayList data with a given size. The
size should not be greater than the length of data. However, LLMs
may miss this constraint and generate invalid value for size. These
issues about value processing could be due to LLMs’ limited in-
ference ability. Instead, MR-Adopt asks LLMs to codify the input
transformation and uses the code to do calculation and processing,
which is recognized as a better way to exert LLMs’ abilities [19].
Besides, we argued that using LLMs as transformations can be
costly since we need to request LLMs for each source input. Mean-
while, MR-Adopt uses LLMs to generate transformations for once,
and there is no need to query LLMs When using the generated
transformations.

Answer to RQ2: MR-Adopt’s refinement step can effectively
enhance follow-up input generation, with up to 18.59% improve-
ment for GPT-3.5. Additionally, MR-Adopt-generated transfor-
mations can effectively generate follow-up inputs for 91.21%
source inputs, surpassing GPT-3.5+ by 75.99%.

4.7 RQ3: Ablation Study on MR-Adopt

4.7.1 Experiment Setup. We created three variants 𝑣1, 𝑣2, and 𝑣3 of
MR-Adopt by ablating three components to analyze the helpfulness
of these designs for generating generalizable input transformations.
We chose MR-Adopt built with GPT-3.5 which achieves the best
result in RQ1 (Section 4.5). The variants included:

𝑣1: MR-Adopt w/o additional input pairs. This variant used
only one source-followup input pair hard-coded in an MTC to guide
the input transformation generation. It did not use additional input
pairs generated in MR-Adopt’s Phase1 (Section 3.1).

𝑣2: MR-Adopt w/o refinement step. This variant disabled the
refinement step for generated input transformations in MR-Adopt
(Section 3.2.2).

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

MR-Adopt: Automatic Deduction of Input Transformation Function for Metamorphic Testing ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

𝑣3: MR-Adopt w/o assessment step. This variant disabled
the assessment step for generated transformation functions (Sec-
tion 3.2.3). Instead, it randomly selected one of the compilable
transformation functions as the result.
Table 3: Contribution of each component in MR-Adopt

Metrics (# Trans.) MR-Adopt 𝑣1 : w/o 𝑣2 : w/o 𝑣3 : w/o
input pairs refinement assessment

compilable 95 87 (-8.42%) 93 (-2.10%) 95 (0.00%)
>0% generalizable 83 73 (-12.04%) 82 (-1.20%) 70 (-15.66%)
>75% generalizable 81 66 (-18.51%) 75 (7.40%) 59 (-27.16%)
100% generalizable 72 58 (-19.44%) 61 (-15.27%) 56 (-22.22%)

4.7.2 Result. As shown in Table 3, removing additional input pairs
(𝑣1) led to a 19.44% decrease in generating 100% generalizable trans-
formations. This indicated that additional input pairs could effec-
tively alleviate the problem of overfitting caused by the limited
number of examples in PBE [1, 11, 29], and help MR-Adopt gener-
ate more generalizable transformation.

Similarly, disabling refinement steps (𝑣2) reduced 15.27% input
transformations that generalize to 100% prepared inputs. This indi-
cated that some generated transformations have minor issues and
can be refined by excluding irrelevant code. Besides, disabling the
assessment step (𝑣3) decreased 22.22% input transformation gen-
eralizable to 100% prepared inputs. This indicated that even with
additional input pairs and the refinement step, LLMs still cannot
generate transformations that well match the input relation and
generalize to prepared inputs. The assessment step is necessary to
rank the most generalizable function.

Answer to RQ3: All three designs contribute to the effective-
ness of MR-Adopt in generating generalizable transformations.
The assessment procedure contributes the most, and additional
example input pairs contribute similarly.

4.8 RQ4: Usefulness of Input Transformations

4.8.1 Experiment Setup. In this RQ, we integrated the generated
input transformations into MTCs to construct generalized MRs
and measured how well such MRs enhanced test adequacy. This
revealed the practical usefulness of MR-Adopt’s transformations
in enhancing test adequacy.

New Test Cases Construction.We applied generalized MRs
incorporating generated transformations to the automatically gen-
erated source inputs introduced in Section 4.4 to obtain a set of new
test cases (denoted as M). We compare such test cases against two
baselines: (i) the developer-written test cases (i.e., MTCs) (denoted
as D) and (ii) test cases based on the LLM-generated source and
follow-up input pairs (denoted as L). Specifically, we combined the
prepared source inputs (Section 4.4) with valid follow-up inputs gen-
erated by Llama3+ which performed the best in RQ2 (Section 4.6).
Considering generalized MR based test cases and LLM-generated
input pairs based test cases are extended from developer-written
existing test cases, we followed Xu et al. [44] to analyze the test
adequacy improvement on top of developer-written test cases.

Metrics.Weused twometrics of test adequacy: (i) Line Coverage:
the percentage of lines of code in the target classes executed by test

cases, and (ii) Mutation Score: the percentage of mutants killed by
test cases.

Mutation Testing: We employed Pitest 12 to conduct mutation
testing. Each MR only focused on one or two methods under test
in the target class. To include the covered lines or killed mutants
in the methods intransitively invoked by MR-involved methods
for comparison, we employed Pitest to generate mutants targeting
all methods in a target class. Finally, Pitest successfully generated
4,388 mutants for 45 target classes covered by 88 MRs in the dataset
(Section 4.2). Pitest failed for the other 12 MRs’ classes because of
environmental issues (e.g., conflict dependencies).

Table 4: Enhancement of test adequacy from generalized MR

based test cases (M) on top of developer-written (D) and

LLM-generated input pairs (L) based test cases

Metrics

VS. D VS. D+L
D D+M Improve. D+L D+L+M Improve.

Line Coverage 0.2373 0.2625 +10.62% 0.2588 0.2698 +4.25%
Mutation Score 0.1322 0.1572 +18.91% 0.1710 0.1807 +5.67%

4.8.2 Result. As shown in Table 4, compared to developer-written
MTCs (D), incorporating new test cases constructed from gener-
alized MR (D+M) increased the line coverage by 10.62% and the
mutation score by 18.91%. This suggested that MR-Adopt could
enhance the test adequacy by integrating high-quality test oracles
(i.e., output relation of the encoded MR) with a diverse set of poten-
tial test input pairs of the MR (M). Although the developer-written
test inputs hard-coded in MTCs were carefully crafted and invalu-
able, each typically included one pair of test inputs and could not
sufficiently exercise the SUT’s behaviors. The new source inputs
generated by test generation techniques and the corresponding
follow-up inputs enabled by MR-Adopt may reach program states
not covered by the hard-coded inputs.

Besides, by analyzing the benefit of using MR-Adopt (D+L+M)
over the test suite enhanced by LLM-generated valid input pairs
(D+L), we could still observe 4.25% and 5.67% improvements in the
line coverage and the mutation score, respectively. This suggested
that even if an LLM could act as a black-box transformation to gen-
erate some valid source-followup inputs and reach more execution
states of SUT, MR-Adopt could generate input transformations that
apply to more source inputs and better enhance the test adequacy.

Answer to RQ4: Test cases constructed from generalized MRs
could achieve 13.52% and 9.42% increases in the line coverage and
mutation score, respectively, demonstrating generalized MRs’s
practical usefulness in enhancing test adequacy.

4.9 Threads to Validity

We identified potential threats to the validity of our experiments
and have taken measures to mitigate them.

Representativeness of Experimental Subjects. A potential
threat is whether our evaluation findings can generalize to different
projects. To mitigate this threat, we adopted the criteria from exist-
ing studies [14, 39, 44] to select high-quality and well-maintained
Java projects as representative subjects (Section 4.2) and evaluated
12https://pitest.org/

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

our method on these projects. Besides, evaluating LLMs with sub-
jects seen during model training (known as the data leakage issue)
will make the findings biased [42]. To mitigate this threat, we col-
lected MR-encoded test cases created after the training cut-off date
of the experimental LLMs, as described in Section 4.2.

Representativeness of Experimental LLMs. Our method de-
pends on LLMs, and we also use LLMs as baselines. A potential
threat is whether our evaluation findings based on the selected
LLMs are representative. To mitigate this threat, we evaluated our
method with LLMs from three well-known LLM families, i.e., GPT-
3.5 from OpenAI, Llama3 from Meta, and Deepseek from DeepSeek.
They represent the state-of-the-art code LLMs (according to the
EvalPlus leaderborad) that can be deployed with the hardware ca-
pacity of our machine, as introduced in Section 4.3.

Quality of the Experimental Source Inputs. As introduced
in Section 4.4, we used an LLM to prepare new source inputs to
assess the generalizability of generated input transformations. Low-
quality source inputs may threaten the evaluation validity. To miti-
gate this issue, we employed another SOTA code LLM (i.e., Qwen)
which is not the experimental subject to prepare the source inputs.
We then use the ground truth input transformations to filter out
invalid source inputs.

Quality of Ground Truths. Besides directly using developer-
written input transformations in MTCs (if available) as ground
truths, we also manually prepared ground truths for MTCs without
input transformations. There is a potential threat regarding the
quality of our prepared ground truths. To mitigate this threat, two
authors (PhD students) proficient at MT and with more than four
years of Java programming experience implemented the ground
truths after understanding the intention of the SUTs and the en-
coded MRs. Specifically, a ground truth was developed by one par-
ticipant and reviewed by the other until a consensus was reached.
Furthermore, the developed ground truths are validated against the
original source input.

5 RELATEDWORK

5.1 Automated Identification of MRs.

Identification of proper MRs is a key step in applying MT to spe-
cific SUTs. To efficiently identify MRs, many automated approaches
have been proposed. Earlier approaches identify MRs based on a
set of predefined patterns [31, 52]. Zhang et al. [50] and Zhang et al.
[49] proposed search-based approaches to inferring MRs. Tsigkanos
et al. [38] proposed to use LLMs to identify variable relation and in-
put transformation in scientific software. These approaches mainly
synthesize MRs for specific domains. Shin et al. [33] proposed an
approach to generating executable MRs from requirement specifi-
cations using LLMs, but it still requires human effort to implement
supportive functions. Recently, Xu et al. [44] explored a new source
to automatically derive MRs. They synthesize MRs from existing
test cases where domain knowledge is embedded. This served as
an effective approach to reusing many encoded MRs. Such encoded
MRs are prevalent, but over 70% lack an input transformation func-
tion to support reusing them on more source inputs.

To reuse these invaluable MRs, in this paper, we propose MR-
Adopt to generate input transformation functions for such MRs.

Integrated with the input transformations, these MRs are found
helpful in enhancing test adequacy in our evaluation.

5.2 LLMs for Test Generation.

Researchers explored various LLM usages for test generation. Yuan
et al. [48] studied the performance and limitations of ChatGPT in
unit test generation. Xia et al. [43] built a fuzzer using LLMs as a
generator of realistic test inputs and an engine for mutation. Tang
et al. [36] compared the effectiveness of ChatGPT and Evosuite in
unit test generation. Lemieux et al. [18] and Yang et al. [45] tried
to promote the coverage of the tests generated by LLMs.

Different from these works, MR-Adopt does not use LLMs to
generate tests directly. Instead, it generates the input transforma-
tion for the encoded MRs and reuses such MRs to enable more
tests. In fact, using LLMs to generate correct and effective oracles
and produce a large number of tests is found challenging [48]. In
comparison, we reuse the human-written oracles in the encoded
MRs, which are generally more reliable than LLM-generated oracles.
Besides, MRs can be integrated with test input generation tools to
produce abundant tests.

5.3 Enhancing LLMs for Code Generation.

LLMs are found powerful in code generation [19, 21], attracting
numerous efforts to enhance the coding ability further. Some re-
searchers designed more effective strategies of pre-training [12, 20,
23] and fine-tuning [6, 32]. Researchers also prompted LLMs with
compilation messages to guide them to revise the generated code
[16, 27, 48] or built a coding agent [51] to enhance LLM’s code
generation ability.

In light of prompting with analogical reasoning [47], our work
guides LLMs to generate more examples, identify the intention,
and finally generate an input transformation matching the inten-
tion. Also, different from the approaches that rely purely on LLMs,
we enhance the generated input transformation’s quality by per-
forming data-flow analysis to exclude irrelevant code segments
from LLMs’ responses and ranking the generated transformation
functions based on validation with the output relation.

6 CONCLUSION

This paper presents MR-Adopt, an LLM-based approach to gen-
erate input transformations for MRs with hard-coded source and
follow-up inputs. MR-Adopt reuses the MRs that are encoded in
the test cases to generate more tests, achieving higher test adequacy.
Experimental result shows that MR-Adopt can effectively generate
generalizable transformations for 72% of encoded MRs, 33.33% more
then using vanilla GPT-3.5. 91.21% source inputs can be assigned
valid follow-up inputs by MR-Adopt, compared with 75.99% at best
baseline. Also, 10.62%+ more lines can be reached by MR-Adopt,
indicating its power for more exhaustive testing. Finally, an 18.91%
improvement in mutation score shows MR-Adopt’s potential in
bug revealing.

7 DATA AVAILABILITY

We released the implementation and all publicly available data at
https://mr-adopt.github.io/.

10

https://mr-adopt.github.io/

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

MR-Adopt: Automatic Deduction of Input Transformation Function for Metamorphic Testing ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

REFERENCES

[1] Rajeev Alur, Rastislav Bodík, Garvit Juniwal, Milo M. K. Martin, Mukund
Raghothaman, Sanjit A. Seshia, Rishabh Singh, Armando Solar-Lezama, Em-
ina Torlak, and Abhishek Udupa. 2013. Syntax-guided synthesis. In Formal

Methods in Computer-Aided Design, FMCAD 2013, Portland, OR, USA, October

20-23, 2013. IEEE, 1–8. https://ieeexplore.ieee.org/document/6679385/
[2] Jialun Cao, Wuqi Zhang, and Shing-Chi Cheung. 2024. Concerned with

Data Contamination? Assessing Countermeasures in Code Language Model.
CoRR abs/2403.16898 (2024). https://doi.org/10.48550/ARXIV.2403.16898
arXiv:2403.16898

[3] Junkai Chen, Xing Hu, Zhenhao Li, Cuiyun Gao, Xin Xia, and David Lo. 2024.
Code Search is All You Need? Improving Code Suggestions with Code Search. In
Proceedings of the IEEE/ACM 46th International Conference on Software Engineering

(ICSE ’24). Association for Computing Machinery, New York, NY, USA, Article
73, 13 pages. https://doi.org/10.1145/3597503.3639085

[4] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondé de
Oliveira Pinto, and et al. 2021. Evaluating Large Language Models Trained
on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https://arxiv.org/abs/
2107.03374

[5] Tsong Yueh Chen, Fei-Ching Kuo, Huai Liu, Pak-Lok Poon, Dave Towey, T. H.
Tse, and Zhi Quan Zhou. 2018. Metamorphic Testing: A Review of Challenges
and Opportunities. ACM Comput. Surv. 51, 1 (2018), 4:1–4:27. https://doi.org/10.
1145/3143561

[6] Shihan Dou, Yan Liu, Haoxiang Jia, Limao Xiong, Enyu Zhou, Wei Shen, Junjie
Shan, Caishuang Huang, Xiao Wang, Xiaoran Fan, Zhiheng Xi, Yuhao Zhou,
Tao Ji, Rui Zheng, Qi Zhang, Xuanjing Huang, and Tao Gui. 2024. StepCoder:
Improve Code Generation with Reinforcement Learning from Compiler Feed-
back. CoRR abs/2402.01391 (2024). https://doi.org/10.48550/ARXIV.2402.01391
arXiv:2402.01391

[7] Xueying Du, Mingwei Liu, Kaixin Wang, Hanlin Wang, Junwei Liu, Yixuan Chen,
Jiayi Feng, Chaofeng Sha, Xin Peng, and Yiling Lou. 2024. Evaluating Large
Language Models in Class-Level Code Generation. In Proceedings of the 46th

IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon,

Portugal, April 14-20, 2024. ACM, 81:1–81:13. https://doi.org/10.1145/3597503.
3639219

[8] Aryaz Eghbali and Michael Pradel. 2024. De-Hallucinator: Iterative Grounding
for LLM-Based Code Completion. CoRR abs/2401.01701 (2024). https://doi.org/
10.48550/ARXIV.2401.01701 arXiv:2401.01701

[9] Gordon Fraser and Andrea Arcuri. 2011. EvoSuite: automatic test suite generation
for object-oriented software. In SIGSOFT/FSE’11 19th ACM SIGSOFT Symposium

on the Foundations of Software Engineering (FSE-19) and ESEC’11: 13th European

Software Engineering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011,
Tibor Gyimóthy and Andreas Zeller (Eds.). ACM, 416–419. https://doi.org/10.
1145/2025113.2025179

[10] Mingyang Geng, Shangwen Wang, Dezun Dong, Haotian Wang, Ge Li, Zhi Jin,
Xiaoguang Mao, and Xiangke Liao. 2024. Large Language Models are Few-
Shot Summarizers: Multi-Intent Comment Generation via In-Context Learn-
ing. In Proceedings of the 46th IEEE/ACM International Conference on Software

Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 39:1–39:13.
https://doi.org/10.1145/3597503.3608134

[11] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-
output examples. In Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL 2011, Austin, TX, USA, January

26-28, 2011, Thomas Ball and Mooly Sagiv (Eds.). ACM, 317–330. https://doi.org/
10.1145/1926385.1926423

[12] Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai Dong, Wentao Zhang,
Guanting Chen, Xiao Bi, Y. Wu, Y. K. Li, Fuli Luo, Yingfei Xiong, and Wen-
feng Liang. 2024. DeepSeek-Coder: When the Large Language Model Meets
Programming - The Rise of Code Intelligence. CoRR abs/2401.14196 (2024).
https://doi.org/10.48550/ARXIV.2401.14196 arXiv:2401.14196

[13] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. 2020. The
Curious Case of Neural Text Degeneration. In 8th International Conference on

Learning Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020.
OpenReview.net. https://openreview.net/forum?id=rygGQyrFvH

[14] Kaifeng Huang, Bihuan Chen, Congying Xu, Ying Wang, Bowen Shi, Xin Peng,
Yijian Wu, and Yang Liu. 2022. Characterizing usages, updates and risks of
third-party libraries in Java projects. Empir. Softw. Eng. 27, 4 (2022), 90. https:
//doi.org/10.1007/s10664-022-10131-8

[15] Maliheh Izadi, Jonathan Katzy, Tim van Dam, Marc Otten, Razvan Mihai Popescu,
and Arie van Deursen. 2024. Language Models for Code Completion: A Practical
Evaluation. In Proceedings of the 46th IEEE/ACM International Conference on

Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 79:1–
79:13. https://doi.org/10.1145/3597503.3639138

[16] Shuyang Jiang, Yuhao Wang, and Yu Wang. 2023. SelfEvolve: A Code Evolution
Framework via Large Language Models. CoRR abs/2306.02907 (2023). https:
//doi.org/10.48550/ARXIV.2306.02907 arXiv:2306.02907

[17] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler validation via
equivalence modulo inputs. In ACM SIGPLAN Conference on Programming Lan-

guage Design and Implementation, PLDI ’14, Edinburgh, United Kingdom - June

09 - 11, 2014, Michael F. P. O’Boyle and Keshav Pingali (Eds.). ACM, 216–226.
https://doi.org/10.1145/2594291.2594334

[18] Caroline Lemieux, Jeevana Priya Inala, Shuvendu K. Lahiri, and Siddhartha Sen.
2023. CodaMosa: Escaping Coverage Plateaus in Test Generation with Pre-
trained Large Language Models. In 45th IEEE/ACM International Conference on

Software Engineering, ICSE 2023, Melbourne, Australia, May 14-20, 2023. IEEE,
919–931. https://doi.org/10.1109/ICSE48619.2023.00085

[19] Chengshu Li, Jacky Liang, Andy Zeng, Xinyun Chen, Karol Hausman, Dorsa
Sadigh, Sergey Levine, Li Fei-Fei, Fei Xia, and Brian Ichter. 2023. Chain
of Code: Reasoning with a Language Model-Augmented Code Emulator.
CoRR abs/2312.04474 (2023). https://doi.org/10.48550/ARXIV.2312.04474
arXiv:2312.04474

[20] Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas Muennighoff, Denis Kocetkov,
and et al. 2023. StarCoder: may the source be with you! CoRR abs/2305.06161
(2023). https://doi.org/10.48550/ARXIV.2305.06161 arXiv:2305.06161

[21] Yujia Li, David H. Choi, Junyoung Chung, Nate Kushman, Julian Schrit-
twieser, and et al. 2022. Competition-Level Code Generation with Alpha-
Code. CoRR abs/2203.07814 (2022). https://doi.org/10.48550/ARXIV.2203.07814
arXiv:2203.07814

[22] Mikael Lindvall, Dharmalingam Ganesan, Ragnar Ardal, and Robert E. Wiegand.
2015. Metamorphic Model-Based Testing Applied on NASADAT - An Experience
Report. In 37th IEEE/ACM International Conference on Software Engineering, ICSE

2015, Florence, Italy, May 16-24, 2015, Volume 2, Antonia Bertolino, Gerardo
Canfora, and Sebastian G. Elbaum (Eds.). IEEE Computer Society, 129–138. https:
//doi.org/10.1109/ICSE.2015.348

[23] Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu,
Chongyang Tao, Jing Ma, Qingwei Lin, and Daxin Jiang. 2023. WizardCoder: Em-
powering Code Large Language Models with Evol-Instruct. CoRR abs/2306.08568
(2023). https://doi.org/10.48550/ARXIV.2306.08568 arXiv:2306.08568

[24] Lipeng Ma, Weidong Yang, Bo Xu, Sihang Jiang, Ben Fei, Jiaqing Liang, Mingjie
Zhou, and Yanghua Xiao. 2024. KnowLog: Knowledge Enhanced Pre-trained
Language Model for Log Understanding. In Proceedings of the 46th IEEE/ACM

International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal,

April 14-20, 2024. ACM, 32:1–32:13. https://doi.org/10.1145/3597503.3623304
[25] Qiuyang Mang, Aoyang Fang, Boxi Yu, Hanfei Chen, and Pinjia He. 2024. Testing

Graph Database Systems via Equivalent Query Rewriting. In Proceedings of

the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024,

Lisbon, Portugal, April 14-20, 2024. ACM, 143:1–143:12. https://doi.org/10.1145/
3597503.3639200

[26] Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and
Brad A. Myers. 2024. Using an LLM to Help With Code Understanding. In
Proceedings of the 46th IEEE/ACM International Conference on Software Engi-

neering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 97:1–97:13. https:
//doi.org/10.1145/3597503.3639187

[27] Ansong Ni, Srini Iyer, Dragomir Radev, Veselin Stoyanov, Wen-Tau Yih, Sida I.
Wang, and Xi Victoria Lin. 2023. LEVER: Learning to Verify Language-to-Code
Generation with Execution. In International Conference on Machine Learning,

ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA (Proceedings of Machine

Learning Research, Vol. 202), Andreas Krause, Emma Brunskill, Kyunghyun Cho,
Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (Eds.). PMLR, 26106–
26128. https://proceedings.mlr.press/v202/ni23b.html

[28] Carlos Pacheco and Michael D. Ernst. 2007. Randoop: feedback-directed random
testing for Java. In Companion to the 22nd Annual ACM SIGPLAN Conference on

Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2007, October 21-25, 2007, Montreal, Quebec, Canada, Richard P. Gabriel, David F.
Bacon, Cristina Videira Lopes, and Guy L. Steele Jr. (Eds.). ACM, 815–816. https:
//doi.org/10.1145/1297846.1297902

[29] Rangeet Pan, Vu Le, Nachiappan Nagappan, Sumit Gulwani, Shuvendu K. Lahiri,
and Mike Kaufman. 2021. Can Program Synthesis be Used to Learn Merge
Conflict Resolutions? An Empirical Analysis. In 43rd IEEE/ACM International

Conference on Software Engineering, ICSE 2021, Madrid, Spain, 22-30 May 2021.
IEEE, 785–796. https://doi.org/10.1109/ICSE43902.2021.00077

[30] Sergio Segura, Gordon Fraser, Ana Belén Sánchez, and Antonio Ruiz Cortés.
2016. A Survey on Metamorphic Testing. IEEE Trans. Software Eng. 42, 9 (2016),
805–824. https://doi.org/10.1109/TSE.2016.2532875

[31] Sergio Segura, José Antonio Parejo, Javier Troya, and Antonio Ruiz Cortés. 2018.
Metamorphic testing of RESTful web APIs. In Proceedings of the 40th International
Conference on Software Engineering, ICSE 2018, Gothenburg, Sweden, May 27 -

June 03, 2018, Michel Chaudron, Ivica Crnkovic, Marsha Chechik, and Mark
Harman (Eds.). ACM, 882. https://doi.org/10.1145/3180155.3182528

[32] Bo Shen, Jiaxin Zhang, Taihong Chen, Daoguang Zan, Bing Geng, An Fu, Muhan
Zeng, Ailun Yu, Jichuan Ji, Jingyang Zhao, Yuenan Guo, and Qianxiang Wang.
2023. PanGu-Coder2: Boosting Large Language Models for Code with Ranking
Feedback. CoRR abs/2307.14936 (2023). https://doi.org/10.48550/ARXIV.2307.
14936 arXiv:2307.14936

11

https://ieeexplore.ieee.org/document/6679385/
https://doi.org/10.48550/ARXIV.2403.16898
https://arxiv.org/abs/2403.16898
https://doi.org/10.1145/3597503.3639085
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1145/3143561
https://doi.org/10.1145/3143561
https://doi.org/10.48550/ARXIV.2402.01391
https://arxiv.org/abs/2402.01391
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.1145/3597503.3639219
https://doi.org/10.48550/ARXIV.2401.01701
https://doi.org/10.48550/ARXIV.2401.01701
https://arxiv.org/abs/2401.01701
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/2025113.2025179
https://doi.org/10.1145/3597503.3608134
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.1145/1926385.1926423
https://doi.org/10.48550/ARXIV.2401.14196
https://arxiv.org/abs/2401.14196
https://openreview.net/forum?id=rygGQyrFvH
https://doi.org/10.1007/s10664-022-10131-8
https://doi.org/10.1007/s10664-022-10131-8
https://doi.org/10.1145/3597503.3639138
https://doi.org/10.48550/ARXIV.2306.02907
https://doi.org/10.48550/ARXIV.2306.02907
https://arxiv.org/abs/2306.02907
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1109/ICSE48619.2023.00085
https://doi.org/10.48550/ARXIV.2312.04474
https://arxiv.org/abs/2312.04474
https://doi.org/10.48550/ARXIV.2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.48550/ARXIV.2203.07814
https://arxiv.org/abs/2203.07814
https://doi.org/10.1109/ICSE.2015.348
https://doi.org/10.1109/ICSE.2015.348
https://doi.org/10.48550/ARXIV.2306.08568
https://arxiv.org/abs/2306.08568
https://doi.org/10.1145/3597503.3623304
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3597503.3639200
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.1145/3597503.3639187
https://proceedings.mlr.press/v202/ni23b.html
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1145/1297846.1297902
https://doi.org/10.1109/ICSE43902.2021.00077
https://doi.org/10.1109/TSE.2016.2532875
https://doi.org/10.1145/3180155.3182528
https://doi.org/10.48550/ARXIV.2307.14936
https://doi.org/10.48550/ARXIV.2307.14936
https://arxiv.org/abs/2307.14936

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

ASE’24, Oct 27– Nov 1, 2024, Sacramento, California, United States Anon.

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

[33] Seung Yeob Shin, Fabrizio Pastore, Domenico Bianculli, and Alexandra Baicoianu.
2024. Towards Generating Executable Metamorphic Relations Using Large
Language Models. CoRR abs/2401.17019 (2024). https://doi.org/10.48550/ARXIV.
2401.17019 arXiv:2401.17019

[34] Chengnian Sun, Vu Le, and Zhendong Su. 2016. Finding compiler bugs via live
code mutation. In Proceedings of the 2016 ACM SIGPLAN International Conference

on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA

2016, part of SPLASH 2016, Amsterdam, The Netherlands, October 30 - November

4, 2016, Eelco Visser and Yannis Smaragdakis (Eds.). ACM, 849–863. https:
//doi.org/10.1145/2983990.2984038

[35] Chang-Ai Sun, Yiqiang Liu, Zuoyi Wang, and W. K. Chan. 2016. 𝜇MT: a data
mutation directed metamorphic relation acquisition methodology. In Proceedings

of the 1st International Workshop on Metamorphic Testing, MET@ICSE 2016, Austin,

Texas, USA, May 16, 2016. ACM, 12–18. https://doi.org/10.1145/2896971.2896974
[36] Yutian Tang, Zhijie Liu, Zhichao Zhou, and Xiapu Luo. 2024. ChatGPT vs SBST:

A Comparative Assessment of Unit Test Suite Generation. IEEE Transactions on

Software Engineering (2024), 1–19. https://doi.org/10.1109/TSE.2024.3382365
[37] MR-Adopt. 2024. MR-Adopt. Retrieved June 6, 2024 from https://mr-adopt.

github.io/
[38] Christos Tsigkanos, Pooja Rani, SebastianMüller, and Timo Kehrer. 2023. Variable

Discovery with Large Language Models for Metamorphic Testing of Scientific
Software. In Computational Science - ICCS 2023 - 23rd International Conference,

Prague, Czech Republic, July 3-5, 2023, Proceedings, Part I (Lecture Notes in Com-

puter Science, Vol. 14073), Jirí Mikyska, Clélia de Mulatier, Maciej Paszynski,
Valeria V. Krzhizhanovskaya, Jack J. Dongarra, and Peter M. A. Sloot (Eds.).
Springer, 321–335. https://doi.org/10.1007/978-3-031-35995-8_23

[39] Ying Wang, Bihuan Chen, Kaifeng Huang, Bowen Shi, Congying Xu, Xin Peng,
Yijian Wu, and Yang Liu. 2020. An Empirical Study of Usages, Updates and Risks
of Third-Party Libraries in Java Projects. In IEEE International Conference on

Software Maintenance and Evolution, ICSME 2020, Adelaide, Australia, September

28 - October 2, 2020. IEEE, 35–45. https://doi.org/10.1109/ICSME46990.2020.00014
[40] Taylor Webb, Keith J Holyoak, and Hongjing Lu. 2023. Emergent analogical

reasoning in large language models. Nature Human Behaviour 7, 9 (2023), 1526–
1541.

[41] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei
Xia, Ed H. Chi, Quoc V. Le, and Denny Zhou. 2022. Chain-of-Thought Prompt-
ing Elicits Reasoning in Large Language Models. In Advances in Neural Infor-

mation Processing Systems 35: Annual Conference on Neural Information Pro-

cessing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - De-

cember 9, 2022, Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Belgrave,
K. Cho, and A. Oh (Eds.). http://papers.nips.cc/paper_files/paper/2022/hash/
9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html

[42] Yi Wu, Nan Jiang, Hung Viet Pham, Thibaud Lutellier, Jordan Davis, Lin Tan,
Petr Babkin, and Sameena Shah. 2023. How Effective Are Neural Networks
for Fixing Security Vulnerabilities. In Proceedings of the 32nd ACM SIGSOFT

International Symposium on Software Testing and Analysis, ISSTA 2023, Seattle,

WA, USA, July 17-21, 2023, René Just and Gordon Fraser (Eds.). ACM, 1282–1294.
https://doi.org/10.1145/3597926.3598135

[43] Chunqiu Steven Xia, Matteo Paltenghi, Jia Le Tian, Michael Pradel, and Ling-
ming Zhang. 2024. Fuzz4All: Universal Fuzzing with Large Language Models.
In Proceedings of the 46th IEEE/ACM International Conference on Software En-

gineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 126:1–126:13.
https://doi.org/10.1145/3597503.3639121

[44] Congying Xu, Valerio Terragni, Hengcheng Zhu, Jiarong Wu, and Shing-Chi
Cheung. 2024. MR-Scout: Automated Synthesis of Metamorphic Relations from
Existing Test Cases. ACM Trans. Softw. Eng. Methodol. (Apr 2024). https://doi.
org/10.1145/3656340 Just Accepted.

[45] Chen Yang, Junjie Chen, Bin Lin, Jianyi Zhou, and Ziqi Wang. 2024. Enhancing
LLM-based Test Generation for Hard-to-Cover Branches via Program Analy-
sis. CoRR abs/2404.04966 (2024). https://doi.org/10.48550/ARXIV.2404.04966
arXiv:2404.04966

[46] Zhen Yang, Fang Liu, Zhongxing Yu, Jacky Wai Keung, Jia Li, Shuo Liu, Yifan
Hong, Xiaoxue Ma, Zhi Jin, and Ge Li. 2024. Exploring and Unleashing the Power
of Large Language Models in Automated Code Translation. CoRR abs/2404.14646
(2024). https://doi.org/10.48550/ARXIV.2404.14646 arXiv:2404.14646

[47] Michihiro Yasunaga, Xinyun Chen, Yujia Li, Panupong Pasupat, Jure Leskovec,
Percy Liang, Ed H. Chi, and Denny Zhou. 2023. Large Language Models as
Analogical Reasoners. CoRR abs/2310.01714 (2023). https://doi.org/10.48550/
ARXIV.2310.01714 arXiv:2310.01714

[48] Zhiqiang Yuan, Yiling Lou, Mingwei Liu, Shiji Ding, Kaixin Wang, Yixuan Chen,
and Xin Peng. 2023. No More Manual Tests? Evaluating and Improving ChatGPT
for Unit Test Generation. CoRR abs/2305.04207 (2023). https://doi.org/10.48550/
ARXIV.2305.04207 arXiv:2305.04207

[49] Bo Zhang, Hongyu Zhang, Junjie Chen, Dan Hao, and Pablo Moscato. 2019.
Automatic Discovery and Cleansing of Numerical Metamorphic Relations. In
2019 IEEE International Conference on Software Maintenance and Evolution, ICSME

2019, Cleveland, OH, USA, September 29 - October 4, 2019. IEEE, 235–245. https:
//doi.org/10.1109/ICSME.2019.00035

[50] Jie Zhang, Junjie Chen, Dan Hao, Yingfei Xiong, Bing Xie, Lu Zhang, and Hong
Mei. 2014. Search-based inference of polynomial metamorphic relations. In
ACM/IEEE International Conference on Automated Software Engineering, ASE ’14,

Vasteras, Sweden - September 15 - 19, 2014, Ivica Crnkovic, Marsha Chechik, and
Paul Grünbacher (Eds.). ACM, 701–712. https://doi.org/10.1145/2642937.2642994

[51] Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. 2024. CodeAgent: Enhancing
Code Generation with Tool-Integrated Agent Systems for Real-World Repo-level
Coding Challenges. CoRR abs/2401.07339 (2024). https://doi.org/10.48550/ARXIV.
2401.07339 arXiv:2401.07339

[52] Zhi Quan Zhou, Liqun Sun, Tsong Yueh Chen, and Dave Towey. 2020. Meta-
morphic Relations for Enhancing System Understanding and Use. IEEE Trans.

Software Eng. 46, 10 (2020), 1120–1154. https://doi.org/10.1109/TSE.2018.2876433

12

https://doi.org/10.48550/ARXIV.2401.17019
https://doi.org/10.48550/ARXIV.2401.17019
https://arxiv.org/abs/2401.17019
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2983990.2984038
https://doi.org/10.1145/2896971.2896974
https://doi.org/10.1109/TSE.2024.3382365
https://mr-adopt.github.io/
https://mr-adopt.github.io/
https://doi.org/10.1007/978-3-031-35995-8_23
https://doi.org/10.1109/ICSME46990.2020.00014
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/9d5609613524ecf4f15af0f7b31abca4-Abstract-Conference.html
https://doi.org/10.1145/3597926.3598135
https://doi.org/10.1145/3597503.3639121
https://doi.org/10.1145/3656340
https://doi.org/10.1145/3656340
https://doi.org/10.48550/ARXIV.2404.04966
https://arxiv.org/abs/2404.04966
https://doi.org/10.48550/ARXIV.2404.14646
https://arxiv.org/abs/2404.14646
https://doi.org/10.48550/ARXIV.2310.01714
https://doi.org/10.48550/ARXIV.2310.01714
https://arxiv.org/abs/2310.01714
https://doi.org/10.48550/ARXIV.2305.04207
https://doi.org/10.48550/ARXIV.2305.04207
https://arxiv.org/abs/2305.04207
https://doi.org/10.1109/ICSME.2019.00035
https://doi.org/10.1109/ICSME.2019.00035
https://doi.org/10.1145/2642937.2642994
https://doi.org/10.48550/ARXIV.2401.07339
https://doi.org/10.48550/ARXIV.2401.07339
https://arxiv.org/abs/2401.07339
https://doi.org/10.1109/TSE.2018.2876433

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Metamorphic Testing
	2.2 MR-Encoded Test Cases

	3 MR-Adopt
	3.1 Phase 1: Input Pair Preparation
	3.2 Phase 2: Transformation Generation

	4 Evaluation
	4.1 Research Questions
	4.2 Dataset
	4.3 Environment and Large Language Models
	4.4 Source Input Preparation
	4.5 RQ1: Effectiveness of MR-Adopt
	4.6 RQ2: Effectiveness of Input Transformations
	4.7 RQ3: Ablation Study on MR-Adopt
	4.8 RQ4: Usefulness of Input Transformations
	4.9 Threads to Validity

	5 Related Work
	5.1 Automated Identification of MRs.
	5.2 LLMs for Test Generation.
	5.3 Enhancing LLMs for Code Generation.

	6 Conclusion
	7 Data Availability
	References

